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ABSTRACT

/
A study is made of plane gas dynamic and transverse

magnetogasdynamic shock waves in fully ionized hydrogen, at

conditions such that radiative processes are significant. An

established steady state flow is found to exist for these

waves only in astrophysical cases, since the wave thicknesses

in such a flow are quite large. In the case of such an es-

tablished flow the Rankine-Hugoniot jump equation (i.e._ the

relationship between the flow variables in the initial and

final states) is analyzed and then solved numerically. It is

shown that of the twelve roots of this equation only two are

physical, corresponding to the supersonic initial and subsonic

final states. The differential equations which describe the

above shock waves are analyzed. The result is a set of four

simultaneous nonlinear ordinary first order differential equa-

tions, the solution of which gives the structure of the shock,

i.e., the dependence of the flow variables on position within

shock wave. The structure equations are solved numerically

for cases where the shock is optically thick, i.e., the mean

free path for absorption of radiation is much smaller than the

characteristic lengths for change of the flow variables. This

is called the Eddington or diffusive approximation. A new

criterion is given for the validity of this approximation in
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terms of the shock itself, independent of the properties of

the atmosphere. Numerical results of radiative shock struc-

ture in this approximation are given.
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CHAPTER I

INTRODUCTION AND HISTORICAL SURVEY

In this paper gas dynamic and transverse magnetohydro-

dynamic shocks in fully ionized hydrogen are studied, under

the following assumptions:

(1) The shock is plane and infinite;

(2) Continuum theory (the MHD equations) can be used;

(3) Radiative energy content and radiative transfer

have significant effect on the phenomena;

(4) A steady flow is established in the sense that a

"shock frame" (a frame of reference, moving with

the shock velocity, in which all time derivatives

are zero) exists;

(5) The gas can be considered ideal;

(6) Radiation intensity is attenuated in the gas by

absorption rather than by scattering;

(7) The atmosphere is in "local thermodynamic equili-

brium," i.e., Kirchoff's law of radiation

applies.

The differential equations resulting from the above seven

assumptions are considered at their equilibrium points, and

the resulting "Jump equation" is analyzed and solved numeri-

cally to find the states upstream and downstream of the shock.
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It is shown that the jump equation, although generally of

twelfth degree, has only two physical solutions, correspond-

ing to the pre-shock and post-shock states. Numerical re-

sults are presented showing the temperature, pressure and

density ratios across the shock as functions of two dimen-

sionless shock parameters.

The solution of the differential equations themselves

requires two additional assumptions, namely:

(8) The angular dependence of the radition field is

such that the radiative intensity can be adequately

represented by the first two terms of a Fourier

series in the Legendre polynomials.

(9) The radiative mean free path is smaller than the

characteristic distances in which all the fluid

properties vary.

With these additional assumptions a numerical integra-

tion of the shock differential equations can be performed in

the gas dynamic case. However, assumptions 8 and 9, along

with assumption 4, restrict the validity of the solution to

a certain limited range of physical conditions. The charac-

teristic length for change in temperature in the specific

cases considered varies from about i0 miles to about .05 light

years, so that the assumption of established flow, which de-

pends on the shock thickness being considerably smaller than
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the characteristic length of the physical environment, can-

not hold in any laboratory generated shock, and probably not

under any planetary conditions. The results may, however,

have astrophysical as well as theoretical interest.

Assumption 9, which leads to the "Eddington Approxima-

tion," further restricts the limits of applicability of the

present solution to a certain range of values of initial shock

conditions. A criterion is proposed for the validity of as-

sumption 9, and for certain cases where it does hold the

numerical solutions to the differential equations are pre-

sented.

Of the other assumptions, only number 6, that of an

absorptive atmosphere, is at all restrictive, in that it sets

an upper limit of about 10 70 K to the temperatures that can

be considered. There is much controversy as to the validity

of assumption 2, the use of the continuum model, in gas dynamic

shock structure theory. However, there is some experimental

evidence (Ref. i) which tends to support the use of this

model. Furthermore, continuum theory is at least self-

consistent in the present problem, since the shocks are at

least several mean free paths in thickness.

The first derivations of the jump conditions across a

gas dynamic shock wave were made by Rankine (Ref. 2) and

Hugoniot (Ref. 3), the latter derivation also showing that

the shock equations had only two equilibrium points, corre-
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sponding to the upstream and downstream states. The problem

of the solution of the gas dynamic shock structure equations,

which are in their general form a pair of simultaneous first

order nonlinear differential equations, was also first under-

taken by Rankine in his original paper. In this work, the

problem was reduced to a pair of equations, one algebraic and

the other differential, by considering the gas to be inviscid

with finite thermal conductivity. Rayleigh (Ref. 4) showed

that this reduction of the order of the equations was support-

able only for sufficiently weak shocks, and performed a simi-

lar reduction considering zero thermal conductivity and finite

viscosity, finding no such restriction in that case. The prob-

lem of gas dynamic shock wave structure with finite viscosity

and finite thermal conductivity was first undertaken by Backer

(Ref. 5), and was considered in its most general form by

Gilbarg and Paolucci (Refs. 6 and 7). Reference 7 also con-

tains a strong argument for the use of continuum theory in

shock structure problems. Other authors, notably Wang Chang

(Ref. 8), Mott Smith (Ref. 9), Zoller (Ref.10) and Grad (Ref.

ii) have undertaken the solution of the problem by direct appli-

cation of the Boltzmann equation, holding that the continuum

results are a poor first approximation of the real solution.

When the fluid is electrically conducting and subjected

to a magnetic field, in other words in the magnetogasdynamic

case, the problem of shock wave structure becomes much more
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complicated. In its general form, four simultaneous first

order nonlinear differential equations must be integrated

between equilibrium points. When the normal component of

the magnetic field is zero, i.e., for transverse shocks, the

number of equations is reduced to three. The problem of

magnetogasdynamic shock structure has been studied notably

by Marshall (Ref. 12), Burgers (Ref. 13) Ludford (Ref. 14),

Germain (Ref. 15) and Anderson (Ref. 16). In none of these

works, however, is a numerical integration of more than two

simultaneous equations attempted, the order of the problem

being reduced by the assumption that certain of the trans-

port coefficients are zero. The difficult problem of the

integration of more than two simultaneous first order dif-

ferential equations between their equilibrium points is dis-

cussed theoretically in Refs. 16 and 17. The jump equation

for transverse MHD shocks, although more complicated than

the gasdynamic Rankine-Hugoniot equation, is not overly dif-

ficultto solve (Refs. 18 and 19).

It is shown in Ref. 20 that in considering the equation

of state of an ionized gas there are many common cases in

which radiation effects cannot be ignored. The shock struc-

ture and jump equations for these cases must thus be modified

to include radiative energy storage and radiative transfer.

The jump equations for radiative shocks were first discussed

in the special case of very strong shocks by Sachs (Ref. 21),
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and in the case of non-established flow (when assumption

does not hold) by Guess and Sen (Ref. 22). A study of the

jump equations for established flow with transverse magnetic

field was made by Pai and Speth (Ref. 23). In the present

paper, this jump equation is analyzed further, and certain

general theorems are proven. It is shown that there exists

only two physical solutions to the equation, and the approxi-

mate location of these roots is determined theoretically, so

that Newton's method can be used directly in the numerical

solutions of the jump equation. The weak shock and strong

shock approximations are also examined, the latter leading

to Sach's results. A discussion is contained which clarifies

the arguments in Refs. 21 and 23 as to the validity of the

established flow assumption.

The subject of radiative shock structure has been ex-

tensively studied since 1952, when Prokof'ev (Ref. 2_) con-

sidered the case of established flow with zero viscosity and

zero thermal conductivity, i.e., "radiation smoothing" alone.

Prokof'ev's original work was corrected and expanded by

Zeldovitch (Ref. 25),Raizer (Ref. 26), Clarke (Ref. 27),

Heaslet and Baldwin (Ref. 28), and in the MHD case by Mitchner

and Vinokur (Ref. 29). The influence of radiation on shock

structure has been studied as a shock tube phenomenon, notably

in the non-established case by Pomerantz (Ref. 30) and Olfe

(Ref. 31). There is much recent work which, as in the present
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paper, considers the problem of radiative shock structure with

viscous, heat conduction and radiation smoothing all present.

Chow (Ref. 32) considers shocks in a transparent atmosphere,

while Traugott (Ref. 33)and Scala and Sampson (Ref. 34) give

results in both the thin (transparent) and thick (highly ab-

sorptive) cases. In the present paper, a complete solution

is given for shocks in optically thick atmospheres. A set of

equations is presented which is valid for all absorptive at-

mospheres. An important criterion is presented in terms of

dimensionless shock parameters as to when an atmosphere can

be considered thick with respect to a given shock, i.e., the

validity of the diffusive approximation is shown to be a func-

tion of the shock itself rather than of the various mean free

paths in the atmosphere.
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CHAPTER II

PHYSICAL AND MATHEMATICAL FORMULATION OF THE PROBLEM

The importance of the radiative energy content of a gas

as compared to its thermal energy content can be roughly

gauged by the size of the parameter e , defined as aTS/nk( =

55.6TS/n), where a is the Stefan-Boltzmann constant (7.67 x

i0 -15 egs units), T is the temperature in OK, n is the

number of particles per cc, and k is Boltzmann's constant

(1.3804 × i0 -is erg/°K). This parameter is the ratio of the

radiative energy per unit volume, aT 4, to nkT, which is 2/3

of the thermal energy per unit volume in an ideal monatomic

gas. For a gas at equilibrium, a value of e = 3/2 implies

the equal importance of the two modes of energy storage, and

a value of £ = 3 implies the equality of the thermodynamic

and radiation pressures. Thus, in writing the momentum equa-

tion for gases at states for which _ is near or greater than

i, it is necessary to include a term representing the gradient

of radiation pressure, and the energy equation must contain

terms representing the flux of radiant energy and the con-

verted flow of radiant energy per unit volume.

Radiative processes can also be important in the direct

transfer of energy from one volume of fluid to another volume.

In this case, one must consider the relative size of the con-
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ductive energy flux k VT, where k is the thermal conduc-
C C

tivity, and the radiative energy flux F. Since heat transfer

requires spatial variations in the properties of the gas,

nothing can be said a priori about the relative importance

of conductive and radiative transfer. The appropriate dif-

ferential equations must first be solved.

The problem to be considered here is that of a plane

infinite shock wave propagating into a fully ionized gas at

a given "upstream" state denoted by the subscript 0. The

state behind the shock will be denoted by subscript i. The

shock has a velocity V in the x direction and, because it

is plane, the fluid properties vary only with x. Radiative

energy storage and transfer are assumed to be important (see

Fig. 2.1).

In some aspects of this work (e.g., the "jump equations")

it adds very little to the complexity of the problem to con-

sider the presence of a magnetic field _ in the y-z plane.

Since the gas is ionized and therefore conductive, an electric

field 3, also in the y-z plane and perpendicular to H_ may

be present also. The MHD approximation can be used in this

case.

A standard technique in shock structure problems is the

writing of all the equations in the "shock frame," i.e., a

frame of reference moving with the shock (at velocity _) in
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STATE 0

vo
v

Vl STATE I

SHOCK FRONT

FIG. 2.1
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which all time derivatives vanish. In fluid dynamic shocks,

for which there is only one characteristic velocity, it is

well established that such a frame exists. In this case, how-

ever, electromagnetic radiation, which has characteristic

speed c, is also considered, and there is a question as to

whether such a steady flow can ever be "established" in the

sense that there is a frame in which all time derivatives

vanish. In a shock tube, for instance, a visible glow from

the upstream fluid will definitely reach a downstream observer

before the shock front. Also, a portion of the energy from

such a glow will be lost to the gas. If the characteristic

length of the physical problem is considered to be infinite,

no such loss would occur.

It will be assumed that a sufficient condition for the

existence of a shock frame is that the radiation emitted by

an element of the gas is reabsorbed by another element of the

gas whose distance from the first element is not large com-

pared to the physical characteristic length. In such a case,

the radiative energy being transferred from hotter regions of

the gas to colder regions can be considered as being at the

same time convected along with the gas, in much the same way

as the heat transferred from molecule to molecule by conduc-

tion is carried along by the molecules in their flow.
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Assuming this to be the case, the fluid dynamic equations

pertinent to the one-dimensional problem can be written, in

the shock frame, as follows: (Refs. 7, 23)

Conservation of mass:

a_(_v) = 0 (2.1)

Conservation of x-momentum:

dv d 1 4 dv

_v _x + _(P + pr + _ _H2 - _ n i_x) = 0
(2.2)

Conservation of energy:

d_ Ur + 1 v 2 P+Pr_v (u + T _ + -V -) dv dTdxd--(SH- nvi_x- k --+ F) =+
c dx

0

(2.3)

where

P

v

P

P
r

H

E

q

U

is the density of the gas

is the velocity of the gas relative to the shock

is the thermodynamic pressure

is the radiation pressure, defined below

is the permeability of the gas (mks)

is the magnitude of the magnetic field (mks)

is the magnitude of the electric field (mks)

is the viscosity of the gas

is the thermal energy density per unit mass
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U is the radiation energy density per unit volume,
r

defined below

k c is the thermal conductivity of the gas

T is the absolute temperature

F is the flux of radiative energy, defined below.

Integration of equation 2.1 gives:

_v -- m (2.4)

where m is a constant, called the mas-flow constant.

Integration and rearrangement of equation 2.2 gives:

1 4 dv

mv + P + Pr + x_Ha_ - _ U _x - P
(2.5)

where P is a constant, called the momentum-flow constant.

Integration and rearrangement of equation 2.3 gives:

Pv + mU + vU r _+F + EH _vHe kc dT- - 2 - _-Q (2.6)

where Q is a constant, called the energy-flow constant.

An additional differential equation is provided by the

"combined Maxwell" equation of MHD:

1 dH E
- vH - -- (2.7)
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where _ is the electrical conductivity of the gas. The

electric field, being tangential, does not vary with x. Here

the magnetic field is in the z direction and the electric

field is in the y direction.

The equation of state of an ideal gas:

p = pRT ; U = CvT (2.8)

will be used since, according to Kelly (Ref. 35) equation 2.8

is valid when the number of particles within a Debye sphere

is much greater than i. For a singly ionized gas with one

species this criterion is:

;47[ nkDs >> 13

where, the Debye length:

1

kT

h D = (_)

where e is the charge of an electron.

duces to

This inequality re-

aT s

6 - nk >> 2.7 × 10 -7
(2.9)

which will always be true if radiation is significant.

ing to Ref. 20, the gas will not be degenerate if

Accord-
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J_

eT -3/z >> 1.5 x i0 -Is (2.10)

Thus if £ = 0.01, a small value of the radiation parameter,

2.8 will hold if T << 108 .

The quantities Pr" Ur and F which appear in equations

2.5 and 2.6 make necessary the consideration of radiative

transfer phenomena in order to solve the problem presented.

The specific radiative intensity Iv(r; t, m, n; t) is

defined (Ref. 36) such that 1%dvd_d_dt is the amount of
v

radiant energy in the frequency interval (v, v + dr) which

is transported across an element of area dZ, in directions

confined to an element of solid angle d_, during a time dr.

Here _ is the cosine of the angle which the direction con-

sidered makes with the outward normal to dZ, and m and n

are the other two direction cosines, dZ is located at the

point r in space (see Fig. 2.2). In one-dimensional prob-

lems such as the present one (called "plane stratified" prob-

lems in radiative transfer terminology) where the properties

of the atmosphere vary in the x direction only, Iv can be

considered a function of x, t, _, t and v only, where

is the azimuthal angle. Since in this problem all directions

in the shock plane are equivalent (ie., the radiation is

axially symmetric) and it is assumed that a frame exists in

which all time derivatives vanish, Iv is a function of x,

and v only.
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d,O,

n

FIG. 2.2
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The radiative mass absorption coefficient of a substance,

K v, is defined, in the plane parallel case, such that, if

during its passage through a path length ds within the sub-

stancej a pencil of radiation of intensity Iv is weakened

by an amount 8Iv, then:

= K @Ivds51v v

The "optical depth" Tv is defined such that:

d_ v = _v@dX

Thus:

651 v = IvdT v

V

s
the coefficient of true absorption, and K

v '

of scattering. The scattering cross section

to the mass-scattering coefficient _V s by

a
can be considered as consisting of two parts: K V ,

the coefficient

o s is related
v

s s
o = mK
v s v

where m is the density of the substance divided by the
s

number of scattering centers per unit volume, i.e., the mass

per scattering center. In the case of a singly ionized gas,

for instance, the major scattering process for radiation of
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thermal wavelength is Thompson scattering from the electrons

(Ref. 3?), but since Kvs is a mass-scattering coefficient,

m
s

in this case is the mass of the ions.

The differential mass scattering coefficient dKvS can

be defined as:

dK s K s 8)d_'
v = v p(cos 4_

where 0 is the angle between the incident and scattered

radiation and p is the "phase function" normalized such

that

fp(cos e)4_ - 1

the integration being performed over all directions of scat-

tered radiation.

The albedo, w o, of a gas is defined such that

s
K = K W
V V O

(i _ Wo)V V

w is thus a measure of the fraction of the absorbed radia-
o

tion which will reappear as scattered radiation.
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The radiative emission coefficient Jv is defined (Ref.

36) such that an element of mass dm emits or scatters into

directions confined to an element of solid angle _q, in the

frequency interval (v, v + dr) and in time dt, an amount of

radiant energy given by

jvdmd_dvdt

The radiative source function Jv is defined as Jv = Jv/Kv"

Jv can be considered as being made up of two parts, emissive

and scattering :

Jr(T, 4) = ev_ v

!

+ 21 Woi,_ IvC%')p°Ci , t')d_'

where: it is assumed that the atmosphere is plane stratified;

e v is the coefficient of true emission, defined similarly to

Jr" but not including scattering; and pO(%, _,) is the phase

factor, now defined in terms of the direction cosines _ and

4' of the scattered and incident radiation, respectively.

The integral represents the radiation in the frequency inter-

val, incident from all directions, which is scattered into

the spherical sector (_, % + de).

The equation of radiative transfer can be written (Ref.

36) in terms of the above-defined quantities as:

_V - Jv - IV (2.11)



2O

The amount of radiant energy in the frequency interval

(V, V + dr) which is transferred across dZ during time dt

is given by (Ref. 36)

dv dTdtf Iv &d_

where the integration is over all solid angles. The net

radiative flux, i.e., the normal flow of radiant energy per

unit area per unit frequency interval per unit time, is thus:

F v = fIv6d_

or, in axially symmetric cases:

1

F v = 2_ f _Ivd6 (2.12)
-i

F
V

->

is the x component of the vector F v = [F V, 0, 0].

The radiative energy density, UrvdV, in the frequency

interval (v, v + dr) at any given point is (Ref. 36) the

amount of radiant energy per unit volume in that interval

which is in course of transit in the immediate neighborhood

of that point. In the axi-symmetric case:

l

27 (2.13)Urv = _- I Iv
-i
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Finally, a radiative stress tensor can be defined, of

which, in this case, only the diagonal component Pry" the

"radiation pressure," need be considered:

1

2_cI _21vd_ (2 14)P__.. -
.i.%,

-i

Integrated radiative quantities are defined as the fre-

quency-dependent quantities integrated over v from 0 to _:

oo

0

o0

J 1%dr
0

1

= f_ ev 1_- dv + _ wo FI IV
o V o -i

(6')p°(l,_')d_'dv

1

_e__v 1 pO
o v -i

co

K = I KV dv
0

d'_ = pdx I Kvdv = pndx
0

1

F : 1%d_ = 2_ I
0 -1

tldt

l

Ur = I UrvdV - c I Id6
o -i

1

2Z 621d _
Pr = I PrvdV - c Ii

0

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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Equation 2.11 can be integrated over frequency to give:

f i azv
P 0 _V _-x dv = J - I

(2.22)

If m is independent of frequency, or can be approxi-
v

mated by some mean, then the equation of transfer is:

t _ = J - I (2.23)

dx

where dT = Kpdx - LR where

free path."

L R is the "radiative mean

The relations thus far obtained, repeated here:

_v -- m

1 4 dv

mv + p + Pr + _ _H2 - 3 _ dx
- P (2.25)

P v + mU + vU
r

_ 2mv + F + EH - _vH2 k d__TT= Q
2 2 c dx

(2.26)

1 dH E
- vH - --

_c dx
(2.27)

p = pRT ; U = CvT (2.28)

1
oo

F = 2_ I 6d6 I dVI v
-i 0

(2.29)
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U
r

Pr -

1
00

f
c -i o

dvl v

1
O0

f f
C

-i O

dvI
v

(2.30)

(2.31)

v _ Jv - Iv
V

(2.32)

are a set of i0 equations in the ii unknowns

Pr' U, Ur, F, T, I v and Jv with parameters

E, and gas properties _, kc, R, Cv, _, _ and

p, v, p, H,

m, P, Q and

Kv . One more

relation is needed for the solution of this set. This rela-

tion is available in equation 2.16, the definition of Jv as

soon as the gas to be considered and the range of physical

conditions are specified.

The gas to be studied in this work will be completely

ionized hydrogen, some of whose properties must now be ex-

amined. The specific heat ratio, _, is 5/3, and the specific

heat C = R/7 - i. The gas constant R for a singly ionized
V

gas is 2Nok/A, where N O is Avogadro's number and A is the

atomic weight of the ions. In the case of ionized hydrogen,

R = 2Nok. Discussion of the transport properties _, k c and

o will be deferred until Chapter 5. The radiative proper-

ties of hydrogen, which have been studied in some detail (Ref.

38), must, however, be considered at this point in order that

the appropriate approximation to equation 2.16 be found, and

the set of equations be completed.
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It will be assumed that the emissivity of the gas ev

is the same as that of a gas at "local thermodynamic equilib-

rium," i.e., that, following Kirchhofffs law:

e
v -B <T)

V
v

where

2hv s i

c a e hv/kT - 1

is the Planck black body function, h being Planck's con-

stant. According to Ref. 39 this assumption is valid when-

ever the electron-electron collision frequency is much greater

than the frequency of recapture collisions between electrons

and ions, and this inequality is true for ionized hydrogen,

where the recapture process is H+ + e _ H + hr. Thus local

thermodynamic equilibrium will hold. At the equilibrium

point of equation 2.11, Iv = Jr' so that the frequency de-

pendence of I can be assumed to be approximately the same
v

as that of B (T), having a peak at or near the Wien fre-
v

quency. For a fully ionized gas, the major scattering process

at thermal frequencies is Thompson scattering (Ref. 37), and

the major absorptive process is continuum (free-free) absorp-

tion. It will be assumed that the physical conditions are
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such that the albedo w << i.
o

For this to hold true it is

sufficient that the mean free path for Thompson scattering

be much larger than that for bremstrahlung, i.e.,

LRS>> LRa

The cross section for Thompson scattering is 6.65 × i0 -as cm 2

(Ref. 37) and the mean free path is thus

1 i. 502 x 1O 24 (2.33
LRS - s - n

nc

where n is the number of electrons per cc.

Menzel and Perkeris (Ref. 38) give the absorption co-

efficient per ionized hydrogen atom as:

a _ CoPe ehV/kT (2 34)

Gv v STS/2 ( - l)g'

where C o is a constant equal to 2.67 × 1024 in cgs units,

Pc is the electron pressure, and g' is a function of v

and T given by:

o hv "

R being the Rydberg constant.
o
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The appropriate mean absorption coefficient for this

problem is the Rosseland mean (see Chapter V) defined as:

a
o

BV(T)dv
o

f_-_l a _'_ Bv(T)dv
0 0

V

a
Using equation 2.34 for o v :

i/8

a Ts/epe 1.57 TX 105) ]cm2 (2 35)
o = 3.32 X i0-7 ---7--[ 1 - . 1098(

(Ref. 38)

The electron pressure Pe is nekTe,
where n is the

e

number of electrons per cc and T is the electron tempera-
e

ture. For fully ionized hydrogen n e is equal to n i the

number of ions per co: n = n = n.
e 1

It will be assumed that

the electron temperature is equal to the gas temperature T,

so that:

a
a = 3.32 x i0 -7- nkz-[l - .1098( T ) ]cm 2

T7/2 1.57 X 105
(2.36)

The radiative mean free path for absorption is:

LRa _ 1 _ 1 _ 1a a a
naO nama_
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where m is the mass per absorber and n is the number
a a

of absorbers, in this case n, the number of electrons per

cc. Then:

_ 1
LRa a

n_

(2.37)

LRa =

1 T 7/2

3-32 X 10-Tk

1

T )
1 - .1098(1.57 x 105

I/s cm

= 2.18 x 1022 T7/2 i

T lOS) z/1 - .Z098(1.57 X

cm
3

(2.38)

Thus, the albedo is much less than one if:

oE

2.18 x 1022 T7/2

)
1 - . 1098(i. 57 X i0 _

T 7/_ 1

n

1 - .i098(1.57

z/3 << 68.8
)

X l0 s

1.502 X iO m4

n

(2.39)

This can be expressed as:

eTZ/2 1

T )
1 - .1098(1.57 x 105

/s << 3825
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Thus, for instance, for e = i, the inequality 2.39 will

hold for T < 107°K, and for T = 10e°K, it will hold for

6 < 3, i.e., for n > 5 x 101S/cc. At lower temperatures,

2.39 is true for all reasonable number densities.

If the inequality 2.39 holds, the source function be-

comes. •

Jv = By(w) (2.)4o)

or, integrated over frequency:

cat 4

J = IBv(T)dv - )4_

Equation 2.40 is the equation required to complete the

set.

It is convenient for the work that follows to condense

and non-dimensionalize the equations. The set can be re-

duced to four equations by substituting equations 2.2)4, 2.28,

2.29, 2.30, 2.31 and 2.40 into the rest. However, two of

these equations would be integro-differential, involving

integrals over _ and v. It is thus convenient to retain

equations 2.29, 2.30 and 2.31 and to use as the reduced set

the following seven equations:

RT 1

m(v + 7) + Pr + 2 _Ha -

4 dv
- P (2.)42)

3_dx
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RT + vU
Pv + 7-1 r

- m---_ _ k dT
2 +F +EH- 2 - c dx -o (2.43)

1 dH E

vH-  x:

_I v

_T - Bv(T ) - Iv
V

1
oo

F = 2_ f dv f IIvd_
o -1

(2.44)

(2.45)

(2.46)

1

Ur = 2_._cf dv f Ivd6
o -1

(2.47)

1

27r f dv f _,21vd_,Pr = -C-
O -1

(2.48)

These seven equations can be non-dimensionalized to give:

de 8 + co + , + 1X_ 1
Lpdx-_ Pr _ Z -

(2.49)

de
=8+2D_U r - D[(1-_)a+A]+Dx(2-Z3_)+ _D F' (2.5o)

dy _X - Z
Lm dx = (2.51)

_ B'(e) - _vv
(2.52)

1 1
00

1 1
F' = -_ f av f 't'_va_" - 2 / &_d&

o -i -i
(2.53)
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1 l

, i _ i
Ur = _ f dV f CV d6 - 2 f _bd,[,

o -I -i

(2.54)

!

Pr

1 1

o -i -I

(2.55)

where:

meRT

Em
X =_-_H

v
Cv - cP

A= 2--_- i
P

]__%_2i( z _)D = = _ for 7 =

P
=

mc

By(e) : _ Bv<m--_;

oo

f
0

a_B_(0)= Se"
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co

f _vdv =
0

k
C

LH- C m
v

m
L -
m P_C

Equations 2.49 - 2.55 will be studied in the following

chapters.
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CHAPTER III

JUMP EQUATIONS

An essential step in the solution of the shock structure

equations, and a study of much interest in itself, is the de-

termination of the "equilibrium points" of the equations,

i.e., those values of the variables for which all derivatives

are equal to zero. If the shock is considered as a transition

between equilibrium states of the gas, then the equilibrium

points will correspond to these states. In gas-dynamic shocks

two equilibrium points, corresponding to the "pre-shock" or

"upstream" state and the "post-shock" or "downstream" state

exist, and these states are found by solving the Rankine-

Hugoniot equations. It will be shown below that the equa-

tions of Chapter 2 also have two equilibrium points, and

numerical solutions to the equations corresponding to the

ordinary Rankine-Hugoniot solutions will also be given.

If all the derivatives in equations 2.49 - 2.55 are set

equal to zero, it is seen, first of all, that:

¢ : B'(8) (3.1)
v v

and thus is independent of 4. Then:

1

F t = 31 S84 f
-I

: 0 (3.2)
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1

, 1
Ur = _ se4 i d_ = se4 (3.3)

-i

, I i
Pr = 2 se4 I _'ed_" = - Se 4 (3.4)

-i 3

Also:

8+m+l IX_ i= 0_se" +_ z - (3.5)

e + 2m_se4 - D[(1 - m)2 + A] + Z,X(2 - X._) = 0 (3.6)

_x - z = 0 (3.7)

Equations 3.5 to 3.7 can be combined into two:

e(1 + _- _) = _(1 l z (3.8)-m) -_

e(l + 2,_) = D[(I -o_) = + A -Z] (3.9)

where e - SU_0 s (3. i0)

The parameter e is, in terms of the dimensional vari-

aT s

ables, p--_-, i.e., approximately the ratio of the equilibrium

radiation energy to thermal energy of the gas.

Equations 3.8 and 3.9 (using the definition 3.10) can be

rearranged into:
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(fe)4 = K [(i - CD)(I -
CD

hZ K_(_ 1
g_) + A + -_--] -- _ (3.lZ)

fe = (1 -_)(7_- l) - A- e_/z_=_ _ (3.12)
03 Cb

where:

f(._) = 2(3_ - _LI) (3.13)

g(7) =_+ 1
- l (3.14)

2 -_ (3.15)
h(7) -%' - 1

K= _// (3 16)
S

The functions of the specific heat ratio _ in equations

3.13 to 3.15 have been left in functional form even though in

any physical situation to which they would apply, 7 = 5/3.

Note that for 7 = 4/3, which is the specific heat ratio

for a photon gas (Ref. _0), the functions F(_) and G(_)

are identically equal, and a mathematically degenerate case

exists (see Appendix A).

For 7 = 5/3

f(v) = 3 (3.17)
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g(_) = 4 (3.18)

and

1
h(7) - 2 (3.19)

K : 81/s (3.e0)

For 7 = 4/3

f(%') : 0 (3.21)

g(7) = 7 (3.22)

and

h(7) = 2 (3.23)

K = 0 (3.24)

The polynomials F(_) and G(_), defined in equations

3.12 and 3.11, respectively, are:

F(o0) = _(i - co)(l - 7c0) + (Am + 2Z) (3.25)

G((O) = a)(l - c_)(l - g(o) + (A_ + hZ) (3.26)

For 7 = 4/3, F(60) = G(e).

Equations 3.11 and 3.12 can be combined into a single

polynomial equation in _, which can be called the "jump

equation" for radiative shocks=

(F(_))4= E (3.27)
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In gas-dynamic shocks, the jump, or Rankine-Hugoniot

equation, one form of which is:

Go(e) = (i- _)(I- g_) + A : 0 (3.28)

2Qm
where A = -7 - i as before, has solutions which depend on

only one parameter A (aside from the fluid property g). The

solutions of equation 3.27, on the other hand, depend on the

three parameters A, S and Z. The jump equation for MHD shocks

with the magnetic field in the plane of the shock can be

written with two parameters A and Z, and equation 3.27 with

H = 0 has two parameters A and S. Consideration of radiation

thus adds an extra parameter to the jump equation. There is

a simple reason for this: in ordinary gas dynamic shocks,

the ratios of the state variables across the shock are func-

tions of one dimensionless variable, say the initial Mach

number, alone, and independent of the level of temperature or

pressure. However, when radiation is considered, the tempera-

ture level, or, more exactly, the value of 6, at the initial

and final states plays an important role in determining those

states. Therefore, a second parameter, corresponding to e

in a similar way to that in which A corresponds to the Mach

number, appears in the jump equation.

It can be shown (see Appendix A) that equation 3.2?,

although of 12th degree, has only two physically possible

roots _o and _l(_o _ _l) which correspond to the pre- and
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post-shock states respectively. Figure 3.1 shows graphically

the location of these roots. Curve A is a plot of

y = _(I - _)(i - ?_)

and curve B is a plot of

y = _(I -_)(i - g_)

for g = _(7 = 5/3)- The straight line C is drawn with inter-

cept y = - 2Z and slope -arc tan A. The straight line D

has y intercept -hZ and the same slope. Line E has y inter-

cept 0 and the same slope. Referring to the figure, the pre-

shock state has:

g --

while the post-shock state has

_f_ _ g

When no magnetic field is present:

and

_o < _o < _

_<_<__ -- g
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_o and _ are the solutions to the gas-dynamic jump
g g

equation, 3.28. Summarizing the results of Appendix A as ex-

pressed in Fig. 3.1, the pre-shock _, _o lies between the

larger of the two positive roots of G(_) = 0 and the larger

of the two positive roots of F(_) = 0, while the post-shock

_, _±, lies between the corresponding smaller roots. With

knowledge of the approximate location of the roots, it is a

simple matter to solve equation 3.27 numerically (see below).

Weak Shocks - Siqnal Speed

A weak shock can be defined as one in which the state

variables change by only a small amount across the shock. In

the limit, when the changes in the state variables can be

treated as infinitesmals, the shock becomes a sound wave,

i.e., a travelling small disturbance in the fluid. The veloc-

ity of weak shocks is thus, in this limit, the signal speed

in the fluid.

Define the state variables in the pre-shock state by

subscript 0 and those in the post-shock by subscript i.

Assume that:

and

T 1 = To(l + t) (3.29)

V I = Vo(I - v) (3.30)
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Where

since

t and v _r_ p_slt±v_ hu_r_; B8£_

PoVo = pi9i m_a VoHo = viNi;

Pi = Po(i _ _)

= my+ pRT + _ _T_ + _

and

mVe + _ mRT + _ VaT 4 + _t_ e (3-3_)
Q- 2 _ - i

If equations 3.33 and 3.3_ are written for states 0 an_

i, and equations 3._9 to 3.3_ are substituted, the results

are:
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( + T _)t-(_, + _)v = o (3.38)

where:

_H e
V e o

o Po

RT
O

(3.39)

aT s
O

- (3.40)
Po R

Equations 3.37 and 3.38 are two simultaneous, homogeneous

linear equations, so that for t and v to have non-zero

solutions, the determinant of their coefficients should vanish.

This gives:

4 e)2(l+_
"y' = i + (3.41)

(v 1_ l+4C)

and

t - 1 v (3.42)
+ 46

"y - i

so that:

v2 = RTo(I + ) +
o 1 + 4c Po

7 - i
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The signal speed is:

Vo : _/'_'RT o + _.Ho/Po (3.43)

where 7' is given by equation 3.41.

This value for signal speed can also be found by con-

sidering the jump equations as state equations and using the

results of MHD for the signal speed (see Appendix B).

The "Mach Number" for radiative shocks will be defined

as the ratio of the velocity to the signal speed:

V
M = (3.44)

_/7'RT + _H2/p

in terms of the dimensionless variables,

1 '3C_ i ya
M-_ : m _ +--e Z (3.45)

Since the weak shock solution corresponds to M o = M 1 = i,

states which satisfy equation 3.27 with finite changes in

fluid properties will have

Mo> 1

M1 < 1

(3.46)

(see Fig. 3.2).
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Stronq Shocks

When the shock propagates at large Mach Number into a

gas at fairly low temperature, approximate results for the

post-shock state can be written in terms of the parameters

of the pre-shock state. Let

RT
o

5 = --= (_.av_
v %,,J --[,,

o

aT s

6 = e = o (3.48)
o po R

X : X o - _ (3.49)
_oVo

where it is assumed that 6, 6, an X are all much less than

1 (in which case X, as defined in equation 3.49, is the same

as the X used previously). This assumption means that not

only is the kinetic energy of the fluid much larger than the

thermal or magnetic energy present, but the initial conditions

are such that the radiative energy is much less than the

thermal energy.

Then:

m = PoVo (3.50)

1

P = mVo[1 + 5 + _ X] (3.51)

1

Q : mVo[ _ + )'--_ D + X] (3.52)
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and, to first order in 6, B and X:

5A = - 1 = 5+ X (3.53)

my 1
coo o 1 - _ - -- X (3 5_)

- P - 2

m2RT

8o o- 2 : D (3.55)
P

aP 7 e

s = _ = _ (3.56)

E2m 2

z- _p_-- x (3.57)

The jump equation, 3 27, can now be solved for co_• , as-

suming that col = ! + _ where
7

is a lower order infini-

tesimal than 5, 6 or X-

To lowest order, equation 3.27 becomes:

(_)36 ?-q(7)(7 )
6 4

(7) _"

6

35 s---f-_ (3.58)

or (_= _(_8, _) f (3.59)

•/_( 31, _ _I, (3.60)
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Equation 3.59 is consistent with the assumption that

is a lower order infinitesimal.

Solving equation 3.12,

18 i/4 _3 i/4
el = (T) (T) (3.61)

Also:

s 3/4 l/4

_l = sm_el 1(18_ (_)--T'T' (3.62)

Pl X1 co°

Oo x m-r 7[l

3/4 _3 i/4
31/4 (_) (T) f] (3.63)

Pz Plel (_)i/, 1
Po- Po e= = 7 (eS)z/4

(3.64)

T1 e I 18 i/4

_ _ = (T) 1
r ° (_B)i/4

or

l 1 e

1 71e 1 X1

M 1 _l _l Z
- 811 - 2(3)l/4(_)

(3.65)

l,[1 + 31/4(_)s/4(_)z/4f] (3.66)
Mi - J8

all the above being given to lowest order. Note that the

density ratio (7) and the limiting Mach number (__i_)limiting
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for finite e as B _ 0 are the same as for gas dynamic

shocks with 7 = 4/3.

The pressure ratio can be expressed in terms of the

Pl
density ratio X - as:

Po

Pl

Po

(7f),i/s X

•1

(3.6?)

This agrees with the result of Sachs (Ref. 21):

Pl

Po

x4/3
1 i/s_?-XJ

i/3
(3.68)

to lowest order, since X = 7 + _(u) and f = (?-g) = X-g +

Relationships Amonq the Constants - Inaccessible States

Equation 3.27 depends on three parameters (A, Z and S)

for a given gas. Specification of these three parameters

will give a unique pre-shock state and a unique post-shock

state. However, physically, the usual case is for the pre-

shock state to be given and the post-shock state to be un-

known. It is convenient to specify the pre-shock state in

terms of three parameters:
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Mo, the Mach number

Co, the ratio of radiation to thermal energy, and

eho, the ratio of magnetic to thermal energy

v e v e

M e o 0 (3.69)
o = _H 0 -RTo(%, 0 + Cho )

aT s

c - o (3.70)
o po R

6ho - PoRT O (3.71)

Using the defining equations for A, Z and S:

2Qm
A=--_- 1

along with equations 3.33 and 3.34, and the equilibrium rela-

tion E = _VoHo, the following expressions are obtained for

the parameters:
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A

Z

, + [71__._+ +i i2(70 6ho ) 60 _ 6ho]Mo - [i + -_ 60

1

[l+_6 o l + (7o + "o ]_+ _" 6ho 6ho)

i 2

+ _ eho]

(3.72)

' + 6ho] 2M46ho[7o o

1

[z+_6 o l , + 6ho)%] ._+ 2 6ho + (70

(3.73)

l z , + ).o]_6011 + _ 60 + _ 6ho + (V 0 6ho

S- (70 + 6ho).MS 0

(3.74)

For M _ _, these reduce to:
0

2['__ 1 + 26 0 + 6ho]

A = (70 + 6ho)Mo
(3.75)

eho
2

Z = (70 + 6ho)Mo
(3.76)

' + 3M6
S = 60(70 6ho) 0

(3.77)

S gets very large as M o increases, provided
6 /0.

0

For e o = 6ho = O, Z = S = O, and
A assumes its value

for an ordinary gas-dynamic shock:

(Ref. 41)
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Relations 3.72 and 3.74 apply to the final state as well,

and can be used to define states inaccessible from shocks.

From Fig. 3.1 it is clear that for A < -hZ there exists

no pre-shock state, since the line with slope -tan-iA and

intercept -hZ will intersect the cubic curves at points

_o > i. Therefore, the condition that a "post-shock" state

1 be accessible from a pre-shock state is that

A > -hZ

or

hehl[7 { + 6hl]M_

[i + _ el + 2 ehl ehl)

+ 2(_{ + ehl)[_---- _ + e I + _hl] MI

1 1

>_[I+ + ] (3.78)

which gives a relation among the three parameters M I, e 1

and ehl , which must be satisfied for all accessible states.

When e I = ehl = 0, the relation reduces to the familiar

"strong shock" solution to the gas dynamic jump equation:

The equality corresponding to relation 3.78 can be

treated as a cubic equation in M I.



5o

4 + alM_ _ ao = 0a3M_ + a2M1 (3.80)

with all a's greater than zero (for 7 < 2).

By Descartes' rule of signs, there is a real positive

root of 3.80, Mm2, such that, for given 60 and eho , all

Mach numbers 1 > M > Mm are accessible from pre-shock states.

Numerical Results

Equation 3.27 has been solved numerically for ionized

hydrogen with H = 0 and the following ranges of variables:

2 50

0.i _< CO<__ i0 ;

also e = 0
o

(radiation ignored)

and the results have been plotted in Figs. 3.2 to 3.7. Figure

3.2 is a plot of M 1 vs M o,

/ 0, all curves approach
o

and it is to be noted that for

1
M 1 - as M increases, which

J8 o
satisfies equation 3.79 with 7 = 4/3, while for 6 o = 0, M 1

approaches i/_5, which satisfies equation 3.79 with 7 = 5/3.

Figure 3.3 is a plot of pl/Po(= Vo/Vl) vs Mo. Again, the

limiting value of density ratio with finite £ is ?, which

is g(4/3), while, when radiation is ignored, the limit is

4, which is g(5/3)-
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Figure 3.4 is a plot of temperature ratio vs Mo, from

which it is seen that consideration of radiation considerably

lowers the theoretical temperature ratio across the shock.

That the theoretical pressure ratio is also lowered when radi-

ation is taken into account is demonstrated by Fig. 3.5. How-

ever, Fig. 3.6 shows that the total (thermodynamic and radi-

ation) pressure ratio across the shock is largely independent

of 6o, and is approximately equal to the thermodynamic pres-

sure ratio across a non-radiative shock. Figure 3.? is a

plot of total pressure ratio divided by thermodynamic pres-

1 1 showing the
sure ratio, i.e., (I + _ 61)/(i + _ Co) vs Mo,

importance of radiation at Mach numbers above about 5, even

when the initial value of 6 is small.
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CHAPTER IV

THE MOMENT APPROXIMATION OF THE STRUCTURE EQUATIONS

The shock structure equations of Chapter If, repeated

here:

Tp d_ e + _ + , + z xi 1 (4.1)dx - _ Pr 2 Z -

de

LH dx Z7_ 2D- e + 2DoOU'r - D[(I - _)2 + A] + DX[2 - ] + _- F'

(4.2)

LM aa-_x= _x - z (4.3)

T,RV__-_ - B_(O) - CV (4.4)

1
oo

Ft 1- 2 f _d_ f dyer (4.5)
-1 0

1

U' 1
r - 2 f dR. f dv_ v (4.6)

-1 0

1
c:Q

Pr' - 21 f_l /'2d6 fO dv(_v (4"7)

are a set of integro-differential equations in three inde-

pendent variables, x, £ and v, the solution of which is
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quite difficult. The set can be changed into an infinite set

of ordinary differential equations with x the dependent

variable and v a parameter, which, through a mathematical

approximation, called the "moment approximation" in radiative

transfer theory, can be reduced to a finite set (Ref. 42).

The change to ordinary differential equations comes from

the expansion of _v in a Fourier series in Legendre poly-

nomials:

O0

Cv(x, _) = Z _,,..,...(X)Pn(6 ) (A..R_,
n=o

where

n

pn(& ) _ 1 d_ (_e _ l)n (4.9)
2nn.v di n

is the n'th Legendre polynomial in

n'th coefficient _vn(X).. is:

¢. The formula for the

1

Cvn(X) 2n+l i _v(X, _)Pn(6)d_ (4.10)
- 2 -1

From the definition 4.9 it is clear that:

1 Po(_)

_2_1 po(_) + _2p2(_)

(4.11)

(4.12)

(4.13)
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and, it is also true that

I 2

f Pn(£)Pm(£)d2,- 2n+l 5nm
-i

where 5 is the Kronecker delta, so that:
nm

O0

F v 1 _O= idv (4.14)

O0

Ur' = f CvodV (4.15)
o

O0 O0

1

Equation 4.4 can be changed from a single partial differ-

ential equation to an infinite number of ordinary differential

equations by multiplying both sides by each of the Legendre

polynomials in turn and integrating over _. Equation 4.4

can first be rewritten as:

O0

LRV2, F d(_vn(X) oodx P (2.) = B'(0) - F (_vn(X)Pn(2,) (I_.17)n v
n= o n= o

If equation 4.17 is integrated over

result is:

from-i to i, the

1 d(_vl B'((9) - _)Vo (4 18)
LRv dx - v
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which is the zero'th moment of equation 4.17 . For the first

and succeeding moments it is convenient to use the recurrence

relationship:

&pn(i) _ n+l2n+l Pn+l (&) +
n

2n+l Pn-i (1) (4.19)

so that equation 4.17 becomes

I_, d_vn-i n ooLRv n=l dx 2n-i Pn (6) + 7 d_vn+l
n=o dx n+112n+3 Pn (_

O0

= B'(@)V - Z Cvn(X)Pn(i )
n= o

(4.20)

The zero'th moment of equation 4.20 is equation 4.18.

The first moment is:

LRV L dx + 5 dx J = - Cvl
(4.21)

The second moment is:

LRV dx 7 = - ¢v2
(4.22)

The m'th moment (m _ 0) is:

E m d_vm-iLRv 2m-i dx
+ m+l d_v m+l_1

2m+3 -J = - _vm (4.23)
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m

Equation 4.23 can be solved directly for
d@vm+ 1

aM
when

is an even number, using equation 4.18. For instance,

from equations 4.18 and 4.22:

3 dCv]_
7 LRV dx = - @V2 + 2(@VO B'V(O)) (4.24)

In general, from equation 4.23:

m+l d@vm+l m d@vm-i

LRv 2m+ 3 dx - @vm 2m-I LRv dx (4.25)

if m - 2 is substituted for m in equation 4.25, the re-

sult is:

m-i d_v m-i m-2 d@vm-3

LRV 2m-i dx - Cvm-2 2m-i LRV dx (4.26)

and 4.25 and 4.26 can be combined into:

m+l d@vm+l m m m-2 d@vm-3

LRV 2m+ 3 dx - @vm + m-i @vm-2 + m-i 2m- 5 LRV dx

(4.27)

i
If this kind of substitution is carried out _ m times, and

equation 4.18 is used in the last substitution, the result

i-s:

m+l dCv m+l m/2
- - _ Bk m(¢vm-2k - D B'(O))

LRV 2m+3 dx @vm k=l o,m-2k v

(4.28)



63

where

k-i

m-2_ (4.29)Bkm = (-i) k H m-2j-i
j=o

Thus, _vm is determined, for m odd, by a differential

equation involving all the even _vm'S with n < m, and e.

Equation 4.23 cannot be solved directly when m is odd,

since _vm-i is only given in terms of _vm+l and _vm and

no equation exists for _vo alone (equation 4.21 can be

solved for _vo only in terms of _v2). Thus, the set of

equations 4.23 is an infinite set, with each new moment equa-

tion introducing a new variable.

Sets of equations similar to 4.23 occur very frequently

in radiative transfer theory. A common way in which the in-

finite set is terminated is by assuming arbitrarily that

_V2N _ 0. The resulting equations are called the "N'th moment

approximation" (Ref. 42). It can be shown (Ref. 42) that the

NTth moment approximation is mathematically equivalent to the

N'th Gaussian quadrature of Chandrasekhar (Ref. 36). The

assumption that _v2N m 0 is thus a mathematical one, with

the accuracy in the numerical determination of _v:

2N-I

_V = Z _vn(X)Pn(_ ) (4.30)
n=o
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increasing as N increases. It is to be noted that if

_v2N _ 0, _v2N+I _ 0 because of equation 4.23, and all _vnt s

of order n > 2N cannot be identically zero. However, there

now exists a complete set of equations consisting of equation

4.28 for m odd, and another group of equations, to be deter-

mined below, for m even.

Taking equation 4.23 for m = 2N - 1 results in:

dCv 2N-2

LRV 4N-3 dx = - CV2N-I (4.31)

and, for M = 2N - 3:

2N-3 d_v2N-4 2N-2 d_v2N-2

LRv 4N- 7 dx + 4N-3 dx = - _v2N-3 (4.32)

Substituting equation 4.31 in equation 4.32:

2N-3 dCv 2N-4 2N-2

4N-7 LRV dx - _V2N- 3 + 2N-I _v2N-I (4.33)

For m any even number, if the above substitution is

2N-m

2
carried out - 1 times, the result is:

m+l d_vm m

2m+l LRv dx - _vm+l - 7 Ck_vm+2k+ 1
k=l

(4.34)

where

k
m k m+2i
ck : (-1)

m+2j+lj=l
(4.35)
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Thus _vm is determined, for m even, by a differential

equation involving all the odd _vn's with 2N - 1 _ n _ m.

Equation _.i and 4.2 can be rewritten, in view of equa-

tions 4.14 to 4.16, as:

d_u e+_+ 1 _ 1 _e 1T dx = _ _ _o + ¢2 + _ z - (4.36)

_H dxdee + 2_ o - D[(14)2 + A] + DX(2- _) + _ _i (437)

where

0o

$O = f CVO dv
O

¢i = f CvldV
o

O0

¢2 = j" ¢V2 dv
0

Equations _.28 and 4.34 represent a set of 2N ordinary

differential equations with v as a parameter. Equations

4.36 and 4.37, on the other hand, have the v dependence

removed. In general, in order for the moment approximation

equations _.28 and 4.3_ to be of value, their v dependence

must also be removed. This can be done by an appropriate

definition of a radiative (frequency) mean free path, e.g.,

the Rosseland Mean Free Path used in the diffusion approxima-
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tion (see Chapter V). Assuming that the mean free path L R

has been determined, equations 4.28 and 4.34 become respec-

tively :

m+l d_m+l m/2 m m_2kSe 4 ) (4.38)LR 2m+ 3 dx - _m + 7 Bk(_m_2 k - 6o,
k=l

N-I-_

LR m+l dCm m2m+l dx - _m+l - Y Ck_m+2k+l (4.39)
k=l

m and m
where m is even, Bk C k are defined as before and

O0

= dV (4.40)Cm f Cvm
o

The set of structure equations now consists, in the N'th

moment approximation, of the following 2N + 3 equations:

4.36, 4.37, 4.3, the N equations represented by 4.38, and

the N equations represented by 4.39. There are 2N + 3

unknowns: co, e, X and the 2N variables _o...¢2N_i. In

particular, the equations for the first moment approximation

are:

IX__ 1Lp d_L_ _e + _ + _o + _ Zdx=_
(4.41)

de
LH _xx= e + 2,x_¢o - D[(1-_) = + A] + Dx[2 - _] +2_D_

3_i

(4.42)
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LM d__ _X - Zdx =
(4.43)

LR d_odx : - _i (4.44)

1 LR d_l Se4 - _o (4._5)
3 dx -

It will be assumed henceforth that equations 4._i - 4.45

are the correct structure equations. The physical assumption

introduced by consideration of the first moment approximation

alone is that the radiative _ _-, _ ......Inte,,s_ I at any point _ t h_

plane-stratified atmosphere can be approximated by the sum of

two terms, one isotropic and one representing forward (or

backward) radiation. For this problem, where the atmosphere

is considerably hotter at x _ _ than it is at x _ -_,

there will be a tendency for much of the radiative intensity

to be in the backward direction so that, since the second

Legendre polynomial P2 has a maximum value in directions

perpendicular to the axis equal to 1/2 of its value in the

forward and backward directions, the assumption that its

Fourier coefficient _2 is zero is a good one.

The method of solution of equations 4.41 - _.45 is dis-

cussed in Appendix C and in Chapter V.
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CHAPTER V

THE SOLUTION OF THE SHOCK STRUCTURE EQUATIONS IN THE

DIFFUSION (EDDINGTON) APPROXIMATION

The radiative shock structure problem has now been re-

duced, in its simplest form, to the five equations 4.41 to

4.45. The solution of these equations is, however, still a

formidable problem. A further simplification can be obtained

if it is assumed that the radiative mean free path is small

compared to the characteristic lengths in which the variables

change. This leads to what is known in the literature of

radiative transfer as the diffusion or Eddington approxima-

tion (Ref. 43).

The equations for _vl and _vo in the first moment

approximation are (see Chapter IV):

d%° (5.1)
LRV dx - @v i

1 d_vl B'(e) - (_V
LRV d_ = v o

(5.2)

If the derivatives of

differentiated and equation 5.1 can be used to give:

LRv are ignored, equation 5.2 can be

1 da_)vl d B'(6))
"_ _'nv_ _- Cvl = Lnv Tx v

(5.3)
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_vl can then be expanded in a series of powers in LRv:

@0

7, L m (m)
RvCvl (5.4)

@vl = m=l

provided LRv is a "small" parameter. The results of sub-

stituting 5./'I"in 5.3 and equating the coefficients of equal

powers of LRv are:

(m) = 0 m even (5.5)

(1) d__ '(e) (5.6)
@vl = - dx BV

(3) 1 d s

%1 = - 5 _ B'(0lv (5.7)

(2k+l) 1 d 2k+l
_ B'(e) (5.8)

Cvl 3k dx2k+l v

for all integers k.

The Eddington approximation consists of taking only the

first non-zero term of equation 5.4, i.e.,

Cvl = - LRV d-_ B'(E)) (5 9)V

and is thus valid if and only if

i d S

15 _.Rv2 _ B_(0) I<< I_ B_(0) I (5.1o)
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or in general

1 LRv2k+I d2k+l B'(e)
I _ dx2k+l v

In other words, the operator

d B'(e) II<< l_x v (5.11)

2 d 2
LRV d_x must be small in

absolute value for all values of frequency and at all points

in the shock structure. The conditions for which the Eddington

approximation is valid will be discussed below. Assuming its

validity for the moment, then, from comparison of equations

5.9 and 5.1,

= B,(e) (5.12)Cvo v

so that, integrating over frequency,

¢o = se4 (5.13)

and

d de
= - LR _ x Se 4 = _ #LRSeS (5.1#)

where L R is the Rosseland mean free path defined by

_ _BV(T)
d BV (T)dv f LRV 3T dvI LRV dx

LR o o
= _ - _ _Bv (T) (5.15)

f d-_ BY (T)dV f _T dv
o o
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(Ref. 4_), since

d__ Bv(T ) _Bv(T) dTdx = _T dx

The equations of the Eddington approximation are thus:

Lp dm e + _ + 1 1 X_ 1 (5.16)dx - _ 3 se4 + _ Z -

[L H + 8 DLR3 _ s°3] dxdO_ O + 2_0 4 - D[(I_) 2 + A] + DX[2 -_]

,(5.17)

L_dd--_x: _x - z (5.18)

For the purpose of simplicity the numerical solution of

these equations will be carried out for X = Z = 0 (no

magnetic field) only. In that case, the effects of radiation

on a gas dynamic shock will be shown, and the equations are:

de S + _ + 1 F(_, e) (5 19)
Lp dx - _ 3 $84 - 1 =

de

Lo _ = e + 2_se" - D[(1-_) 2 + A] - G(_, e) (5.20)

where

8 DLR SSs (5.21)
LQ = L H + 3
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Equations 5.21 and 5.22 can be written as a single equa-

tion in the _ - e plane (the "phase plane"):

de _ 6' _- (5 22)
d_ F

Lp
where D' - a function of x. (5.23)

LQ '

Examination of the formulas for the characteristic

lengths Lp and LQ shows that 6' << i.

In Chapter 2, the characteristic length Lp was de-

fined as:

4 a (5.24)
Lp- 3m

Marshall (Ref. 45) gives the following formula for the vis-

cosity of ionized hydrogen:

5J_H (kT)_/_
ri = cgs (5.25)

_w_we4

where:

m is the mass of the hydrogen ion
H

e is the electronic charge, and

is a function given by:

= In[l + "547 n× 10al(l_)S] (5.26)
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Numerically:

= 0.3823 x i0-__ cgs

so that

Lp 4 21 0.5097 × i0-_4 Ts/2
= 3 m = m_ cm (5.27)

In Ref. 45 the following formula is given for the thermal

conductivity of ionized hydrogen:

k = 0.464 _2[ 75k (kT)S/2

c 16_ W_e e4_

(5.28)

where m is the mass of an electron.
e

of gas is defined as

The "Prandtl number"

Cv_
N -
p k

c

(5.29)

For ionized hydrogen

a 3k

v >-i
(5.30)

so that:

Np = 0.4064V'_ ~ 0.00945 (5.31)
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Now

LH 3--=
Lp 4Np 79.3 (5.32)

so that

LH = 0 4042 × i0 -12 Ts/m
" m----_--cm (5.33)

The function _ can be expressed in terms of T and v as:

= &n(l + 0.9082 × i0 -Is vTs)
m - (5.34)

Finally, in terms of the dimensionless variables _ and e:

pS es/e

Lp = 0.5097 × i0-14 mSRS/2 _ cm
(5.35)

LH = 0. 4042 × i0 -le pS eS/e
mSRS/2 _ cm (5.36)

= &n(l + 0.9082 × i0 -Is p7 _e_) (5.37)

= gn(l + 0.118 Re) (5.38)

and from equation 2.38 the Rosseland radiative mean free path:

LR = 0.60 × I0 -2s pS cbeeT/2
mllRT/2 "%'

(5.39)
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where P, m and R are as defined in Chapter II, and

_' = 1 - 0.00203 m2/SR1/3
(5._o)

Formula 5.39 holds only for _' > 0, or

The ratio of L R to Lp

T < l0 s OK (5._i)

L R - p4

_p- 10-11 m--_ _2e _
(5.42)

is, for the region of interest, between i0 e and 10 I° (see

Appendix D), and, from equations 5.21, LQ >> LR, since _(-v)

appears in the denominator in the second term. Thus:

Lp

_, - T.° << 1 (5.43)

The basic features of the shock structure problem will

not be affected if it is assumed that Lp, LQ and L R are

constant. Reasonable values for these constants are:

_p = (_.r,oLp1)1/= (5.44)

LQ = (LQoLQI)I/2 (5.45)

ER = (LRoLRI)I/2 (5.46)
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where the subscript 0 applies to the pre-shock state and the

subscript 1 applies to the post-shock state. If 6(<< i) is

defined as

_Q

Equation 5.22 can be written

de _ _ G (5.47)
de F

It can now be shown that the Eddington approximation is

valid if, at all points along the shock curve 0o = _(x),

e : e(x),

and

IF(e, e) I<_(_) (5.48)
I

dF e) I <___B) (5 49)IZQ _(_,

First, since L R is the mean of the LRV J defined ac-

cording to equation 5.15 in terms of a smooth function of v,

it can be assumed that if

d 2

I LR_X-",_x I << 1 (5.5o)
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2 d 2
then I LRV _ I << I for all

Eddington approximation is valid.

written

v, i.e., if 5.50 holds, the

d

The operator dx can be

de _ de_dx= (_x_+_x )

or, according to equations 5.19 and 5.20

Lp LQ

then 5.50 can be written

LR 2
G 2 82 2FG _2 F 2 _)2 GG e FGa)

LQ e LpLQ L--p2 LQ LpLQ

where

i dF _
- dx _ I<<i
Lp

(5.51)

or

_G

G e = _ , etc.

LR2 ]

Now

G 2 32 2FG 52 Fe _2 FG _ LQ dF

L-_ - _(B_) << l,

quantity are of order I, inequality 5.52 holds.

(5.52)

so that if the terms multiplying this

In the region

of interest, G is at most of order 1 along the shock curve
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(see Appendix D), and if the functions operated on (e.g., F,

G) are themselves of at most order i, and are sufficiently

smooth, the partial derivatives are at most of order i. Then

if 5.48 and 5.49 hold, 5.50 must hold, and the Eddington ap-

proximation is valid.

An equivalent statement of equation 5.48 is

L--R << t w (5.53)

where t is the shock thickness with respect to the dimen-

sionless velocity _.

The shock thickness with respect to a particular variable

y, ty, is defined in the following manner: Let the variable

y have pre-shock and post-shock values (obtained from the

solution of the jump equations) Yo and YI' respectively.

If Yo _ Yl'

lyo-YlI

ty- ]dd__xI (5.54)

max

Id=_la_'= is the maximum absolute value of dy withinwhere
dx

max

the shock, determined from the solution of the shock differ-

ential equations (see Fig. 5.1). If Yo = Yl (as for instance,

in this case _i,o = _i 1 = 0), let _y be the maximum abso-

lute value of Y - Yo within the shock (see Fig. 5.2). Then
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t = nv (5.55)

max

By equations 5.19 and 5.54

w

Lp lO_O-CO1 ]

t_ - IF ]max

where IFlmax is the maximum absolute value of F along the

shock curve. From 5.48

%
IF lma x : _(_---)

LQ

t_ - LQ l_o-_ll= _(_) << 1
(5.56)

since ]COo-C01 I is of order i.

It will also be true that

LR << te (5.57)

where t e is the shock thickness with respect to the dimen-

sionless temperature e, since by equations 5.20 and 5.54

LQ leo-e I I
te - ]G]

max

and thus
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LR _ _R IG Imax

te (_--) =o_(_)<< i (5 58)LQ leo-e I I

since IGlma x and leo-ell can both be considered of order

i. Thus, when the Eddington approximation holds, the radia-

tive mean free path is smaller than the characteristic lengths

in which the gas dynamic variables change through the shock,

and radiation emitted in the shock will be reabsorbed within

the shock.

Equations 5.19 and 5.20 are of the form:

d_z_ F(y) (5.59)L(y) dx

where L(y) is a diagonal matrix, in this case

y is a column vector, in this case

and

The boundary conditions on the problem are that

known at two points, Po and P1 ' such that:

F(y) is a line vector, in this case (F(_, e), G(_, e)).

y is

_(yo) = _(yl) = 0 (5.60)
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Since the right-hand side of 5.59 does not contain x

explicitly, and condition 5.60 applies at points Po and P1

which are the only known points on the shock curve, equation

5.59 cannot be integrated directly. That is, a Taylor series:

y(x ° + Ax) = Yo + ly x + dx _,yo 2"w "'"
(5.61)

will have all zeros on the right-hand side except for the

first term (if _x is finite) and

y(x° + _x) = Yo (5.62)

for all finite Ax Points P and P1 are called equilibrium" o

points of 5.59, and because of equation 5.60 x o and x I,

must have infinite values (either +_ or -_).

The problem of numerical integration of equation 5.59 is

discussed in Appendix C. At present it suffices to mention

that equation 5.59 is linearized in the neighborhood of Po

or PI:

dv ,'%

L = M[y-yo). -dx
(5.63)

where M is a matrix whose components are

_F.

l (5.64)
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and a change of coordinates performed to reduce 5.63 to

T,d_z= My (5 65)
dx

If, in the present case, h °
1,2

tions of the equation

and h_
1,2

are the solu-

det I M- hL I = 0 (5.66)

at Po and P1 respectively, it can be shown that (see

o and o
Appendix C): h I h 2 are both real and positive; h _1

and h_ are real and of opposite signs, say h_ < 0, h_ > 0;

there is a unique solution curve to equations 5.19 and 5.20,

for which P (the pre-shock state) corresponds to x = -_
o

and P1 (the post-shock state) corresponds to x = +_; and

the slope of that curve in the phase plane at P1 is:

l

A__e = M_I MII - ZILp (5.67)
A_ M22 - h_LQ- MI2

where, according to equation 5.6_,

e
: = 1 - _ (5.68)M11 Fm

MI2 = re = _l+ _ se3 (5.69)

M21 = G = 2D(Se4 + (1- _)) (5.70)

M22 = G e = i + 8DS_e s (5.71 )
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the matrix elements being evaluated at PI" It is also shown

in Appendix C that the solution curve with slope 5.67 will lie

in that region of the phase plane defined by:

v(_, e) < 0 ; G(_, e) > 0 (5.72)

(See Figs. 5-3 and 5.4)

Since the values of _ and e

tion curve near P1 (_ = _l, e = e z)

at a point on the solu-

can be determined from

equation 5.67, equations 5.19 and 5.20 can now be numerically

__=e_a on the phase plane,, usina the quotient equation

de G

5.47, d_ - B _.

However, advantage can be taken of the fact that B << 1

to eliminate the need for numerical integration. Since

D << I, equation 5.47 immediately reveals two interrelated

G
facts. Assuming _ is of order 1 at some point on the shock

curve, then as the integration progresses in the neighborhood

of that point, e will change much less than cD, i.e.,

Ae
IKS_ I<< 1 (5.73)

Figure 5.5 shows that if this situation continues for some

distance, the integral curve will approach the curve F(o_,e)=O.

Alternatively, since the change in e along the integral curve

from P1 to Po is finite, the curve must be such that for

at least part of it

G
I _ I << 1 (5.74)



86

0
II

h

©

0
II



87

An integral curve of 5.47 must thus satisfy 5.74 for

some range of values of the parameter x, and if values of

x exist for which 5.74 is not satisfied, 5.73 must be sat-

isfied for these values.

Two cases must now be distinguished, according to the

sign of F at point PI:

Case A: F_(P I) > 0 (5.75)

Case B: F_(P I) < 0 (5.76)

The slope in the phase plane of the curve

P1 is

F = 0 at point

de F (Pl)
d---_l = - (5 77)

F=0 Fe(PI) " -

and thus is negative in Case A and positive in Case B, since

F e is always positive according to equation 5.69. G and

G e are also always positive. Since (see Chapter III)

1 7'_'e (5.78)W = 7

F can be written

F
1

= 1 - _ (5.79)
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Since P represents the pre-shock state, for which M > i,
o

F is always positive at that point. Thus, two possible

shapes exist for the region defined by the inequalities 5.?2,

as shown in Figs. 5.3, corresponding to Case A, and 5.4 cor-

l from equation 5 66responding to Case B. The value of h 1

and the slope of the integral curve at P1 from equation 5.6?

can be computed for each of the two cases with the following

results to order 6:

F

Case A: Ae _ _ +_62) (5.80)
A0_ F 0

G

+ (5.81)Case B: A_-
6D

Thus, to order 5, the integral curve for Case A follows

the curve F = 0 at point PI' and for Case B the slope of the

integral curve at point P1 is negative but almost horizontal,

since 5 << i. In other words, in Case A, the integral curve

satisfies 5.74 at point PI' while in Case B it satisfies 5.?3.

Now 5.?4 is a stable condition of equation 5.4? in the

direction from P1 to Po (i.e., of increasing _), provided

F is positive. That is (see Fig. 5.5), if F tends to in-

crease in absolute value as the integration proceeds in that

de
direction, I _ I tends to decrease, so that the integral

curve is forced into a direction for which I F I tends to
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decrease. Thus, once the curve satisfies 5.74 for some value

of x, x_, it will satisfy 5.74 for all x > x*. In Case A

this means that 5.?4 will be satisfied for all x (see Fig.

5.6). A more exact statement of 5.?4 can be found. Since

de

equation 5.47 is true, and near the curve F = 0, I _ I

along the shock curve is of order i, while G is at most of

order 1 (see Appendix D), 5.Z4 can be expressed as

J F I < 0(6) (.5.82)

This is identical to 5.48, showing that for Case A the shock

curve staisfies 5.48 at all points.

In Case B the integral curve must proceed from P1 with

decreasing x in an almost horizontal direction (see Fig.

5.Z) until it reaches a region where 5.82 is satisfied, whence

it must closely parallel the curve F = 0 until point P
o

is reached.

In both cases the shock curve in the phase plane can

thus be found to close approximation without numerically

integrating. In Case A the curve follows the curve F = 0

from P1 to Po

the line e = e I

sects the curve

(Fig. 5-7).

(Fig. 5.6). In Case B the curve lies along

from P1 until that line once again inter-

F = 0, and then follows that curve to P
o
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It can now be shown that in Case A the Eddington approxi-

mation holds. Inequality 5.48 has been shown to apply. From

de
equation 5.19 Lp _x = _(6), so that

de _ _l) (5.83)
LQ dx

also

de

LQ _x = _(1) (5.84)

so that the characteristic length of all the variables in

Case A is LQ. If 5.49 is not satisfied, i.e., if

I _QdF _xx I>>_ (5.85)

then in one characteristic length

IAF I>> 5 (5.86)

so that 5.48 cannot be satisfied. Therefore, since 5.48 and

5.49 are both valid for Case A, the Eddington approximation

holds in that case. A sufficient condition for the validity

of the Eddington approximation is thus:

_(pl ) > o

This criterion can be expressed in a number of ways, for

instance,
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or

O_ < _z- (5.87)

1

< (5.88)

Inequality 5.88 is especially useful in the physical interpre-

tation of this result, since it shows two differenct circum-

stances in which the Eddington approximation is valid, namely:

e is compar-(i) If the shock is very weak, so that M 1

atively large (e.g., for 61 ~ 0, if M 1 >0_.6).

(2) If the radiation pressure in the post shock state

is so dominant that 7{ is large (e.g., for e I = 18, 7{ ~ 8,

so that 7{ > MI_I for any possible MI).

By means of the jump equation, 5.87 or 5.88 can be trans-

ferred to pre-shock conditions, resulting in Fig. 5.8, which

shows the regions in the

approximation is valid.

M o - 6 ° plane in which the Eddington

It can be seen from this figure that

for 6 ° > 4.2, or for M < 1.3, the approximation always holds,
o ~

and that as the Mach number increases above " 3.5 or de-

creases below that value, the approximation holds for smaller

values of 6 o. There is thus only a limited region of low

6 ° and intermediate M o for which the Eddington approxima-

tion is not valid.

The shock curves in the phase plane can be transferred

to real space (i.e., T and v vs. x), as is done in Fig.
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5.9. From Fig. 5.9 it is clear that when the Eddington ap-

proximation is valid both T and v vary over a charachter-

istic length LQ, and that for Case B equations 5.19 and 5.20

lead to characteristic lengths Lp for velocity (and there-

fore density) and LQ for temperature. However, the results

shown for Case B are mathematical only, since one of the

physical assumptions used to obtain them is invalid. Their

correspondence, if any, with physical reality can only be

determined by solution of the equations of the first moment

approximation.

It is shown in Appendix C that a solution curve to these

equations exists. However, the determination of this curve

presents great difficulty.
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APPENDIX A

THE SOLUTIONS OF THE JUMP EQUATION

In this appendix equation 3.27:

602G(_) 1 (AI)

is studied and the following results are obtained:

(i) There are only two physically possible roots, _o°

and 03! (_oo > _!) which correspond to the pre- and post-shock

states respectively.

(2) 60° lies between the larger of the two positive

roots of G(60) = 0 and the larger of the two positive roots

of F(_) = 0.

(3) 601 lies between the smaller of the two positive

roots of G(_) = 0 and the smaller of the two positive roots

of P(_) = 0.

According to the definitions in Chapter III

F(60)--_(i- 60)(i- 760)+ (Am + 2z) (A2)

G(60) = 60(1 - 60)(1 - gco) + (Am + hZ) (A3)

mv and g andwhere 60 is the dimensionless velocity, _ - p,

h are functions of the specific heat ratio
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X_t_! (A_g(7) = _ _ i

h(v) - _ (AS
-7-1

The constant K in equation A1 is

K =_ (A6)
S

where f(7) = 2(_) (AT)
7 - i

The roots of A1 thus depend on 7 and on the three shock param-

eters:

A = _ - i (AS)

aPT (Ag)
S = m--_

Eem e

Z - _ (At0)

The constants on the right-hand side of these equations are

defined in Chapter II.

m2RT
The dimensionless temperature @ =

from equation A1 using equation 3.11 or 3.12

can be found

(fe) 4 = (All)

fe = - (A12)
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It is to be noted that for 7 =

f(7) = 0, so that A1 reduces to

F(t0) = G(_) and

F(_) : 0 (A13)

which is a mathematically degenerate case. However, even in

this case there are two physical roots, namely, the two posi-

tive roots of AI3.

For the purposes of this appendix equation A1 will be

studied for 7 = _, so that

f(_) = 3 (AI4)

g(v) = 4 (A15)

h(_) : ! (AI6)
2

lz)G(_) : _(i - _)(i - 4_) + (_ + (AI7)

This is the case of real physical interest, but mathematically

apply, with numerical differ-
the results obtained for _ = 3

ences, to all _ > _. An analysis can be made for _ <--_, the

results of which are quite similar to those obtained here, but

unimportant for the problem at hand.

The special case of Z = 0 (no magnetic field) will be

considered first, and then the general case Z _ 0 will be

studied.
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I Case Z = 0

Equation A1 reduces to

GI(_) 1
(AI8

where G 1 and F 1 are quadratic expressions:

GI(_) = (1 - _)(1 - 4_) + A

Fl(_) = (i - _)(1 - 7_) + A

Equations All and AI2 become (for f = 3)

(A19

(A2o)

(30) _ - (A2I)

so that, since

must have

Be = - FI(_) (A22)

e _ 0 for physical solutions, these solutions

FI(U0) ! 0 (A24)

NOW if G I has real roots, say _o and
g

then A23 is satisfied on the real axis for

(A25)
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and 6D > e-o (A26)
-- g

while if the roots of G 1 are complex A23 is satisfied for

all real _. If F 1 has real roots, say 7..o_f and _f(_f _>

_), then A24 is satisfied on the real _ axis for

while if the roots of

which satisfies A24.

of F 1 must be real.

F 1 are complex there is no real

Then for any physical problem the roots

Since

7

there is a maximum value of A in physical cases,

A < _ (A29)
-7

Also, combining A25, A26 and A27, the physical solutions of

AI8 must satisfy

_-_> _ > _o (A30)
_ g

_ >_ >_ (A31)
g --

if the roots of G 1 are real. A30 and A31 can only be sat-

isfied in that case if
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-o > _o (A32)
_f_ g

i.e., if the roots of G 1 lie inside the roots of F I. To

show that this is the case, equation A20 can be subtracted

from A19 to give

GI - FI- 3_(i - _) (A34)

so that

GI - F1 > 0 for 0 <_ _ < 1

Then

-_) >oand G I (_f _

since at those two points F 1 = 0.

true i f

But this can only be

and _ig f --icof (A35 )

i.e., if the roots of G 1 lie inside the roots of F I.
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Thus, if the roots of G 1 are complex, there is one

physical region, R, defined by A27, while if the roots of

G 1 are real, there are two physical regions, R ° and RI,

defined by A30 and A31 respectively.

It is now possible to show that the roots of AI8 satisfy

the following conditions for every A and S:

When the roots of G 1 are complex, there are two and

only two real roots in R. When the roots of G 1 are real,

there is one and only one real root in R O (pre-shock state),

and one and only one real root in R_ (post-shock state).
I

This is the equivalent of the statement: For every pre-shock

state there exists one and only one post-shock state.

The proof of the above is based on the "root locus method"

(Ref. 46):

Equation AI8 can be rewritten:

q 1 S

K 81 (A36

Then, in the complex _ plane

Arg(o>-_) + Arg(_-_g) - Arg(0)) - 4Arg(_-_) - 4Arg(cD-_)

S

= Arg 81 - 0
(A37)
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In this expression _o and _l are the roots of the left-
g g

hand side and 0, _ and _f are its poles. For real _,

the argument of (_-_i) , _i being a real root or pole, is

if _ < _i and 0 if _ > _i" Thus a segment of the real

axis to the left of an even number of real singular points

(roots or poles) must be on a locus of roots of equation A36,

the parameter of that locus being K.

For K = 0, the roots of A36 are 0, _

last two being roots of multiplicity _. As

and _i the
_f,

K _ _, the roots

of A36 approach _o and _i. Since there are 9 poles and
g g

only two roots, seven of the root loci starting at the poles

must terminate at the point at infinity. The set of loci

must be symmetric with respect to the real axis, since the

complex conjugate of any complex root must also be a root for

the same value of K. The root loci which approach infinity

2z

to asymptotically to 7 lines at an angle of _-- to each

other, all originating from the "center of gravity"

c

+ - + )
q q _f (A38)

-7

according to the general formula

ZoJ -Z_pi
i oi i

_c N - N
o p

(A39)

where
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_oi

N
o

are the positions of the zeros

are the positions of the poles

and N are the number of zeros and poles, respectively.
P

As applied to A36 the method can be summarized graphically

by two diagrams:

Case A: Roots of

Case B: Roots of

G 1 complex (Fig. AI)

G 1 real (Fig. A2)

(In these figures the x's represent poles and the O's represent

zeros. )

From these diagrams, it can be seen that:

Case A

If for a given K there is one real root (corre-

sponding to the pre-shock state) in R, then there is one and

only one more real root (corresponding to the post-shock

state) in R.

Case B

There is one and only one real root in R ° and one

and only one real root in R 1 for any given K.

Thus there is one and only one post-shock state for every

pre-shock state.

II Case Z _ 0

The reasoning used here is similar to that in the previous

case. In equation AI, F(_) and G(_) have three roots, and

can be written in the general form
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J
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F y(60) : --g(_) + Lh(_) (_0

where
g

and Lh(60 ) = Aa) + hZ (A42)

so

F(_) = F4/3(_)
(A43)

G(60) : F5/3(_ )
(A44)

The roots of F (_)
7

curve depending only on

are the intersections of a cubic

g as a parameter, and a line with

slope -A and intercept

i CD_ 6DO 6DIlabeled 60}, 60_, and 60f or __' g, and g

- o and 601
G respectively, or generically %, 607,

A3.

For physical solutions, since 8 > 0

-hZ (see Fig. A3), and can be

for F and

as in Fig.

G(60)> o (Aa5)

F(60) < 0 (A46)

As before, if

satisfied on the real positive

60_>60
g--

and 60 > 600
-- g

G has real positive roots, then A45 is

60 axis for

(A47)

(A48)
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while if the roots of G are complex, A45 is satisfied for

i must be real,all real _. Also as before, _ and _f

and A46 is satisfied for

o > co>_ • (A49)_f _ _f

Again, combining A_7, A48 and A49 for the case of real

and _, the physical solutions of A1 must satisfy

03o
g

o > co> _o (A50)
_f_ _ g

g _ _f (A51)

so that it must be shown that the positive roots of G lie

inside the positive roots of F.

The proof here is different from that in the previous case,

since the functions F and G have two parameters (A and Z) rather

than only one, as F 1 and G 1 have. Here

G - F : 3_(1-_) -32 z (A52)

which is greater than zero for

-- 0

where CD_I , CU{ and _' are the three roots of
o

3co2(1-co) - _ Z : 0

(see Fig. A4).
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Then_ in order for the positive roots of G to lie be-

tween the positive roots of F, it must be true that

l

_{ < _f (A53)

ana _{ < _z (A5_)g

or, since F(0) and G(0) are both greater than zero

F(_i) = G(_i) > 0 (A55)

By substitution in equation AS0

or

_(_{) = z[

F7(_ i) = Z[

1- (g-2h)0_'

2_i lj + A_{

1 - 3(0'

since g - 2h = 3 for all 7. FT(_i)

greater than zero if

is thus certainly

1

1 we
Now, at 00 = 5 , (I-oD)-

be true if Z < o_.

2
27

From equation 3.9:

(A57)

and from Fig. AS, A57 will

Z
e(l + eDe) = D[(I-_) _ + A- Z] (A58)
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it can be seen that if a physical pre-shock state exists

(i__0) 2 + A - _ > 0 (A59)

where

A59

w ° is the value of w for the pre-shock state. From

z < [w(l_) 2] + w°A (A60)
_ max

where [w(l-w) 2]

tween 0 and i:

max
is the maximum value of w(i-_) e be-

[w(1-w) _]
4

max 27

Then

z _<_ + w°A (A6I)

Z and A are two constants which depend on the four inde-

pendent constants m, P, E and Q. Therefore Z and A

are independent of each other, and for a particular Z A61

must hold for all possible A, in particular for A = 0.

Then

4
z  2-7

and A57 holds, so that the positive roots of G

the positive roots of F.

(A62)

lie between
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Equation A1 can now be analyzed by the root locus method.

Its left-hand side has 5 zeros, and 12 poles. It is possible

to define regions R, or R o and R 1 in the appropriate case,

as before, and describe all possible root and pole combinations

in two Figs. A5 and A6. (Note, these figures are drawn for

_g < _f. For the purposes of this discussion the location of

_; relative to _f is irrelevant.) The conclusions drawn

from these diagrams are identical to the corresponding con-

clusions in the previous case, and the general result is that

for every pre-shock state there exists one and only one post-

shock state.

The results of this Appendix can be summarized graphically

in Fig. 3.i, which is described in Chapter 3.
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APPENDIX B

SIGNAL PROPAGATION SPEED

In this appendix the signal speed in a gas under the

physical conditions described in Chapter 2 is derived using

the standard methods of gas dynamics. To do this, the time-

dependent mass flow, momentum flow and combined Maxwell equa-

tions (ignoring viscous effects and assuming infinite conduc-

tivity) are written:

-_PV= 0 (BI)

_-_ + _(P + Pr + _Ha + pve) = 0_t 2
(B2)

8H_ C)
8t vH (B3)

combining equations B1 and B2

8._yv 8v 1 _)
8t + v 8x - p 8--_ (p + Pr + ) (B4)

Equations BI, B3, and B4 can be linearized by assuming

small disturbances about equilibrium:

Pt = Pto + p'
(B5)

P = Po + p'
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V -----V ! (B7)

H= H + h v
O

(B8)

where the total pressure:

Pt = p + Pr (B9)

the sum of the thermodynamic and radiation pressures, and it

is assumed that the fluid is stationary, i.e., that there is

no velocity in the large. Assuming p', p', vt and h' to

be first order infinitesimals, and Pro _ Po and H ° to be

independent of x and t, the equations become, to first

order :

_t_ _v'+ PO ()x - 0 (BI0)

_v' 1 _x(p , + _Hoh ,) (BII)
_-f - Po

c)h' c)v___!i (BI2)
_t - HO _X

Differentiating Bll and BI2 will respect to

respectively and combining:

_2v' _ 1____fei+
: Po bxat

t and x

_Ho _ av'

Po _ (BI3)

If it is assumed that the disturbance is adiabatic, then
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_ dPt j - =2 (Bl_)
Ap ' dp S

i.e.j _2 is the change in total pressure due to a change in

density at constant entropy. The Alfven velocity (Ref. _?)

_H e

_2 = o (BI5)
@o

so that BI3 can be rewritten:

_v' ____ + _2 8_v'
_t_ = - PO _x_t

(BI6)

If BI0 is differentiated with respect to x and com-

bined with BI6 the result is

_2v' _e 2 _2v_ v a _= ( + _ )_x--x-_- - o (B17)

which is a wave equation with propagation velocity

v2 : _2 + _ (B18)
o

In order to determine _2 in terms of the thermodynamic

variables, the gas can be considered as obeying the equation

of state:

I

Pt : pRT + _ aT 4
(BIg)

with energy per unit mass
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RT aT 4

u_ y _ i + p (B20)

From the combined first and second laws of thermodynamics:

Pt
TdS = dU - --_ dp (B21)

p

when the entropy is constant,

dU Pt

-rd-n-nlS - P'_ = 0 (B22)

Using equation B20

dU Pt _R $aTS)dT
(Pt + aT4)

p2 (B23)

where all the derivatives are at constant entropy. Then

dT

dp (B2g)

where

From BI9

_ aT s
6 -

pR
(B25)

dPt _ dT _2d@ - pR(l + e)_p + RT = (B26)
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so that

_2 = RTII +

(B27)

and the signal speed

v 0 = V_ m + _m = _7'RT + _H2/@ (B28)

where

_I = Ii +

(B29)

is the equivalent specific heat ratio for signal speed.
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APPENDIX C

ANALYSIS OF THE SHOCK STRUCTURE EQUATIONS

This appendix deals in general with equations of the

form

T. d_x F(y)dx =
(Cl)

where L is an

y is an n

F(y) is an

n × n diagonal matrix,

dimensional column vector,

n dimensional line vector,

and equation C1 is to be integrated between two points

and YI' such that

F(yo) = F(yl) = 0

Yo

(c2)

The analysis is later specialized to the cases of two equa-

tions, namely, equations 5.19 and 5.20, and of four equations,

namely, the equations of the first moment approximation.

Points Yo and Yl are called equilibrium points of

CI, and it is clear that any direct integration of Cl from

either point Yo

is the value of

theorem

or Yl will fail. For instance, if

x for which Y = Yo' then by Taylor's

x
o
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d2y(xo + : yo + l + 2., + "'" (c3)
X O X O

y(x O + AX) : YO (C4)

for all finite Ax since all other terms in the series will

be proportional to F(Yo). Then x ° and Xl, the value of

x for which Y = YI' must both be infinite in absolute value,

and a method must be found for the integration of C1 other

than a direct one.

Equation C1 can be most conveniently treated in its

"phase plane," which is an n-dimensional space with Cartesian

coordinates y± ..yn• , and its behavior in the neighborhoods

of the points in this space Yo and Yl must be studied

(Refs. 16 and 17). In these neighborhoods

F(Y0, 1 + Ay) = MAy + (Ay 2) (C5)

where M is the n × n matrix

_F
1

M, 0 --

13 _yj

(c6)

evaluated at the particular point (Yo or yl ) . In each of

these neighborhoods in turn a change of origin can be per-

formed, so that for each equilibrium point the linearization

of C1 can be written as
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L dv = My
dx (c7)

The formal solution of equation C 7 is

n hkX

Z _e
k=l

(c8)

where each _ is a column vector, and the n kk'S are the

solutions of the equation

det I M- hL I = 0 (c9)

To show that this is the case, each term in C8 can be

seen to satisfy C7, i.e., by substitution

hkX hkX

LkkAke = M_e (el0)

or

(M - ZkL)A k = 0 (cn)

which is true for arbitrary A k if and only if C9 is satis-

fied. Thus, in the neighborhood of an equilibrium point,

solutions of C1 have an exponential dependence on x given

by ¢8.

It has been shown that x o and x I must be infinite

in absolute value, i.e., equal to either + or -_. There can
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be two distinct directions of integration of Cl, either from

Yo to YI' in which case x ° = -_ and x I = +_ or from Yl

to Yo" in which case x I = -_ and x ° + However, the

nature of equation C1 is such that only one, if any, of the

two directions of integration will give a unique solution

curve of C1 which passes through both Yo and YI"

At each equilibrium point in the phase plane, call the

exiting direction that for which its corresponding x is -_

and the entering direction that for which its corresponding

x is +_. It is clear that in C8 certain of the terms will

apply to the exiting direction, namely, those whose h k are

> O, while the rest of the terms, namely, those for which

h k < O, will apply to the entering direction. Let

r ° = the number of positive hklS at Yo

s o = the number of negative hk'S at Yo

r I = the number of positive hk'S at Yl

s I = the number of negative hk'S at YI"

Then, the exiting direction at Yo occupies an r ° dimen-

sional manifold, i.e., if x ° corresponds to -_, the inte-

gral curve of Cl in the phase plane can leave Yo in any

direction which lies within an r ° dimensional plane at Yo'

determined by the eigenvectors corresponding to the r o

positive hk'S. Similarly, the entering direction at Yo

occupies an s dimensional manifold, and the exiting and
o
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entering directions at Yl occupy r I and sI dimensional

manifolds respectively. Call the direction of integration

from Yo to Yl the forward direction and from Yl to Yo

the backward direction. Then it is clear that in the forward

direction, the solution curve of C1 occupies an r ° dimen-

sional manifold at Yo and an sI dimensional manifold at

y whereas, in the backward direction, the curve occupies an

s o dimensional manifold at Yo and an r I dimensional man-

ifold at YI" Then an integral curve in the forward direction

lies along the intersection of an r uxwen_xunal manl_v±_
o

and an s I dimensional manifold, while an integral curve in

the backward direction lies along the intersection of an r 1

dimensional manifold and an s dimensional manifold in n
o

dimensional space.

The dimensionality of the intersection of a p dimen-

sional manifold with a q dimensional manifold in an n

dimensional space is given by

n - (n - p) - (n - q) = p + q - n

so that for a unique integral curve (a one-dimensional mani-

fold) to exist in the forward direction it must be true that

r ° + s I = n + 1 (Cl2)
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and for such a curve to exist in the backward direction it

must hold that

rl + So= n + 1 (Cl3)

It is clear that C12 and C13 cannot both be true at once,

since

+ s = r I + s I = nro o
(Cl_)

so that there is at most one direction of integration for

which a unique integral curve of C1 exists.

The Eddinqton Approximation

In this case n = 2 and the two equations corresponding

to C1 are

d_ e 1

Lp dx - _ + --_+ 3 S0 4 - 1 = F(_, 0) (C15)

de

LQ _xx = e - D[(I-_) 2 + A] + 2DS03e 4 = G(_, e) (el6)

When n = 2, a simplification and extension of the above

analysis is possible (Ref. 17). In the first place, it is

clear that a unique solution curve to C1 will exist if at one

of the equilibrium points both k's have the same sign (such

a point is called a node), and at the other point the kts are
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of opposite signs (such a point is called a saddle point).

The integral curve in this case will be the intersection of

a two-dimensional manifold (the entire phase plane) with a

one-dimensional manifold, and the slope of the integral curve

in the phase plane at the saddle point can be determined.

If at the saddle point k s is the eigenvalue of opposite

sign to that of the k's at the node, the solution to C 7 near

the saddle point corresponding to h s can be written:

yl = yl, sehSx (C17)

_s
ya : ye, se x (C18)

and, substituting into C 7

so that

LlllSy I = MII yl + MI2Y2

L22kSya = M21 yl + M22 y2

(Cl9)

(c20)

(_i - kSLll )yl + MI2Ye = 0 (C2L)

M2Iy_ + (_22- _s_'22)Y_: 0 (C22)
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Since the determinant of the coefficients of C21 and C22 is

zero, they have a common solution, and the ratio of y2 to

yl is given by:

MII - kSLll -M_I (C23)
y_ = _

MI2 M22 - hSL22

But equation C 7 has been obtained by a change of origin such

that the saddle point corresponds to yl = y2 = 0. Thus y_

is actually the slope of the solution curve at the saddle

point, and

-_= - MII - hSLll = -Mel (C24)
Sl2 M22 - xSL22

at the saddle point. Thus, in the case of n = 2, equation

C1 can be integrated numerically in the phase plane from the

saddle point to the node using the quotient equation:

L2_Z  2(y) (c25)
LII dy - FI_

the slope of the solution curve to C25 at the saddle point

being determined by C24.

The above method can be applied to equations C15 and

C16. The components of the matrix M are
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e
MII = F = 1 - --_ (c26)

(c27)

M2Z = G = 2D(Se" + (1-_)) (C28)

M22 = G 8 = 1 + 8DS_e s = 1 + 8De (C29)

The equation for the eigenvalues h can be written

LpLQh 2 - (LQF + LpGe)h + (F Ge - FeG e) = 0 (c30)

The sum of the eigenvalues at either Yo or Yl is thus

F G e
_o,i + o,i 0b +

1 h2 = L_ LQ
(c3z)

and their product is

o, ih_, z I
hl - LpLQ ( Fo0Ge - FeG0o)

(c32)

The term in parenthesis in C32 is equal to

(z + 8D_)(]. -Mz-=)

since
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G_ = 2D _(i + _ 6) (c33)

using the jump equations, and thus

F6oG0 - FoGco =

F G 0 - FoG _ =

(i + 8D_) - _-= +

(i + 8De) i -

1 + 8De
(c34)

(c35)

Then

- LpLQ(I + 8De0, I) 1 -
(c36)

Now M ° > 1 and M 1 < 1 so that

and

oo>0hlh 2

_<oXIX2

(C37)

(c38)

Point Yo is thus a node, and Yl is a saddle point. To

determine whether the positive or negative h i is to be

used, it can be seen from C31 that

k_ + h_ > 0 (C39)

since F and G 0 are both positive at that point. Then

o and o
h I h 2 are both positive, and the negative eignevalue
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at Yl is to be used. The integral curve is thus exiting

at Yo and entering at Yl' Xl corresponding to +_. The

numerical integrations, however, must be carried on from

x = +_ to x = -_, since the slope at Yl is known, given

by

F - klL P G e
de I = e
--deYl - re = - Ge - _i_'Q (c_0)

i being the negative eigenvalue at YI"k I

The First Moment Approximation

In this case n = 4, the four equations corresponding to

C1 being

de e 1
Lp dx e+--_+_¢o 1 --FI(Y) (C41)-- D --

2D¢ 1

LH d0dx - @ - 2D[(I-cD) e + A] + 2D0_ o + - 3fi - F2(y ) (C42)

de 0

LR dx = - ¢i _ F3(Y)
(c_3)

1 d¢l S@4 - ¢o _ F4(Y) (C44)
LR dx -

It will be shown here that a unique solution curve to C41 -

C44 exists. The matrix M is
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S

1

(D

1

3

2D_

0 0

0

2D

3_

-i

0

(c45)

so that C9 becomes

1 - _ - ALp 1

2De -_-1 + &) 1 - kL H

0 0

1 0
3

2D_ 2D
3_

-AL R -i

-hL R
4_A_ -1 --

0 e 3

= o (c46)

The determinant in C_6 is more conveniently expressed as

the sum of two determinants, equation C46 becoming

(7,_l_7,Lp) 1 1 03

2Do0(1 + _ 6) l-kL H
2D2D_
3_

0 0 -AL R -i

____6 -hLR
0 -i 3

+ (i-

1

0

0

1 1 ¸

3

I-ZL H 2D_

0 -%L R

0

2___D
3_

-i

-AL R

3

= 0 (c47)
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where _ = 1 -

The determinants in C# 7 can be expanded to give the fol-

lowing equation in k:

A4 - i---[_'-I+Lp_ 7' _ )hs - ---!---i/_--ILpLHk7' #(7-i+_e _)' + T)̂3LQLP_ a

Lpnn_,(7 + D_)R2 _
3LQ

7' 2 R+LpLRL H

+

0 (c#8)

where

8D6

LQ = L H +_--_L R
(c#9)

Equation C#8 can be written

_,T,p(l- Mi-=)-
h[k 3 - a2R2 - air + a o]

h s _ b2R2 - blh + b o

h h
--_ (c5o)

where all the coefficients a. and b are positive and
1 l

p(h) = R s - a2_2 - air + a o (c5i)

q(R) = R_ - b2_ - blR + bo (c52)
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By Descarte's rule of signs p and q have one real negative

root each. The root locus method (see Appendix A) can now be

applied to equation C50 , with 7'Lp(l - Ml--_), the root locus

parameter, being positive for state 0 and negative for state

i. The root loci for states 0 and 1 are shown in Figs Cl and

C2 respectively. From Figs. Cl and C2, in which the singulari-

ties are not distinguished as to roots and poles, it is clear

that there are two negative roots of C_8 at PI' i.e., s I = 2,

and that there are three roots with positive real part at Po'

i.e., r O = 3. Thus

r O + s I = 5 = n + 1 (C53)

and a shock curve exists.
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APPENDIX D

SOME NUMERICAL RESULTS

The purpose of this appendix is the presentation of the

numerical procedures and results pertinent to the analyses

and conclusions in the rest of this paper. Numerical studies

were made of 45 cases, as listed in Table DI, with the fol-

lowing ranges of parameters:

Initial Mach Number 50 _ M O _ 2

Initial Radiation Parameter i0 _ 60 _ 0.i

Initial Temp. in OK 106 _ T O _ l04.

In all of the above, the magnetic field was zero. No cases

with non-zero magnetic field were considered numerically.

In Table DI, the cases are divided into 15 groups of three,

denoted by the Roman numbers I - XV, the cases included in

each of these groups having the same values of the dimension-

less parameters M ° and _o" Many of the results presented

below depend only on these parameters, so that only 15 cases

need be considered. Table D1 includes, besides the initial

values of M, e, and T for each case, also the final values

of these three variables.

There were four numerical problems which had to be solved

in connection with this paper. These were:
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(i) Solution of the jump equation,

(2) Determination of the shock curve,

(3) Finding the maximum value of G(_D, e) along the

shock curve, and

(A) Finding the region of validity of the Eddington

appr oximati on.

Each of these problems will be treated separately below.

Solution of the Jump Equation

This was essentially a simple algebraic problem, and an

IBM 1620 Fortran program was written for its solution. This

program is listed in Table D2. The inputs to this program

are the initial conditions Mo, e O and To, and the outputs

are the final conditions MI, e I and T 1 as well as the

values of velocity, density, thermodynamic pressure and total

pressure at the initial and final states. The actual solution

of the jump equation is accomplished in a subroutine labeled

"Ranhug," in which the location of the post-shock state on

the _ axis is approximated by the method of Fig. 3.1, and

Newton's method is then used to find the value of z as

closely as desired. The results for the post-shock state

are partially tabulated in Table DI, and are shown graphically

in Figs. 3.2 - 3.?.
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The Shock Curve

Thanks to the analysis in Chapter V, the determination

of the shock curve is reduced from a problem in numerical

integration to an algebraic one with negligible loss of ac-

curacy. An IBM 7090 Fortran program was devised which, using

as inputs the outputs of the jump-equation program,

(1) Determines the values of the characteristic lengths

Lp, LQ

(2)

(3)

and L R at the initial and final states.

Finds the values of _P' _Q' _R and D

Finds the sign of F at point P1 and thus

classifies the problem according to whether or not

the Eddington approximation is valid,

(4) Determines 20 - 30 points alon_ the shock curve in

the phase plane using the methods of the Eddington

approximation whether or not it is valid, and

(5) Finds the shock thicknesses t and te, using

the results of (4), and compares them to LR" This

program is listed in Table D3.

It is assumed in Chapter V that the parameter 6 -

is very small. That this is the case is demonstrated in LQ

Table D4, which lists the values of LP' _R' _Q and 6 for

each of the 45 cases. Also listed in Table D4 are -- and

ER t_
-- for each case. (It is to be noted that the meaning of
t e

the latter results is doubtful in cases where the Eddington

approximation does not apply.) Table D 5 is a classification
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of the 15 groups according to the validity of the Eddington

approximation. In Figs. 5.6 and 5.7 phase plane plots of the

results of (4) are shown for typical cases in which the

Eddington approximation does and does not apply, respectively,

and the corresponding curves of T and v vs x are shown in

Fig. 5.9. Figure D1 shows how the temperature shock thickness

varies with M for various values of e The values ofo o"

te ref for use with this figure are given in Table D6.

The Maximum Value of G(_, e)

A necessary step in the argument that the Eddington

approximation holds when inequalities 5.48 and 5.49 are sat-

isfied is the statement that the maximum possible value of

G(_, e) along the shock curve is of order i. The validity

of that statement was tested for cases I - XV using a simple

numerical procedure, the evaluation of G(_, e) along the

curve F(_, e) = 0. It can be shown that the maximum of

G(_, e) in the allowed region:

F(_, e) < 0 (DI)

G(O_,e) > 0 (D2)

is indeed along the curve F(e, e) = 0.

in the phase plane

f_o= h

If an arbitrary path

(D3)

ne = k (D4)
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is chosen, the change in G along that path is

Since

_G = G h + Gek (D5)

G_ = 2D(se" + (l-e)) (D6)

Ge = 1 + 8D_mses (D7)

and both are greater than zero, _G will be positive along

a path such that

h > 0 (DS)

k > 0 (Dg)

Then, from Figs• 5.3 and 5.4 it is clear that the maximum

value Gma x of G(o_, e) in the region defined by D1 and D2

is along F(_, @) = 0, and therefore the maximum value of G

along the shock curve must be less than or equal to G
max

the Values of Gma x for cases I - XV are listed in Table Dy,

from which it is clear that for those cases G(_, 8) along

the shock curve does not exceed one.

Region of Validity of the Eddinqton Approximation

The criterion for the validity of the Eddington approxi-

mation is

el
1 - _ > o (DlO)
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and therefore the curve

6)1

---m = i (Dli)
gO i

is the boundary between two regions in the 81 _ _i plane,

in one of which the approximation is valid and in the other

one of which it is not. The curve DII can be transferred to

the 8o _ _o plane by means of the jump equation. This is

accomplished by means of an IBM 1620 Fortran program which is

listed in Table D8. In this program, curve DII is found for

1
(DI2)

ii - _/-6 < e_ < ¼ (DI3)
50 -- --

and the corresponding values of 8° and _o are calculated

by means of the subroutine RHIN wherein Newton's method is

used on the jump equation AI8.

The origin of the limits in DI2 is as follows: Besides

satisfying DII, eI and e I must satisfy the jump equations,

and must also both be greater than zero. The strength param-

eters A and S must also be greater than zero. In particular,

the following must be satisfied:

8i 1 4

F(_' 8_) = _ + 7 + _ se_ - 1 : 0 (D14)
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(3e_) = - (i-__)(i-7__) - A (DI5

031

Equations DI_ and D1 5 can both be written in terms of

as follows:

1 8

S03i + 203i - 1 = 0 (DI6)

2

i003 i - 8_ i + 1 = -A (DI7)

Since S and A must both be greater than or equal to

zero, DI6 can only be satisfied if

2031 - 1 < 0

or

1

03_<__ (DIS)

and DI7 can only be satisfied if

2

i003 i - 8_ l + i < 0

or

4 _< -< +10 6 (D19)

Inequality DI2 is derived from DI8 and DI9.

The results of the calculation described in this section

are shown in Fig. 5.8.
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INITIAL AND FINAL STATES

Case No.

1

2
3
#
5
6
7
8
9

i0

ii

12

lj
14
15
16

17
!8
19
20
21

22

23
24
25
26

29
3o
31
3x
31
32
33
3#
37
38
39
40
41
42
43
44
45

M
0

2
2
2
2
2
2
2
2
2
5
5
5
5
5
5
5
5
5

i0
i0
i0

i0

i0

i0
i0

i0

i0
20
20
20
20
20
20
20
20
20
5O
50
50
50
50
.50
5O
5O
5O

E
0

0. i

0. i

0. i

1

1

1

i0

i0

i0

0. i

0. i

0. i
1

1

1

i0

i0

i0

0. i

0. i

0. i

1

1

1

i0

i0
i0

0. i

0. i

0. i
i

1

1

i0

i0

i0

0. i

0. i

0. i
1

i

1

i0
i0

i0

TO(°K)

104

l0 s

i0 e

104

l0 s

i0 e

104'

l0 s

i0 e

104

l0 s

i0 e

104

105

i0 e

104

l0 s

i0 e

104

I0 s

l0 s

104

105

i0 e

104

i0 s

i0 e

104

l0 s

l0 s

104
l0 s

i0 e

104

l0 s

l0 s

104

l0 s

i0 e

104

l0 s

I0 e

104

l0 s

l0 s

M
1

0.598
0.598
o.58
0.5_0

0.580
O.580
0.570
0.57O
o. 70
0._29

0.429
0.429
0.409
0.409
0.409

E
1

0.278
0.278

1.54
1.54

11.50
11.50
11.50

1.92
1.92
i. 92
5.12
5.12
5.12

T (°K)

1.88Xi04

1.88xi0 s

1.88Xi0 e

1.59xi04

1.59Xi0 s

1.59Xi06

l.#7x104

1.47xi0 s

l.#Tx10 e
4 46xi04

4.46xi05

4.46Xi0 e

2.98Xi04

2.98X!05
2.98×i0 e

O.398 25.
0.398 25.
o. 25.

0.382 6.
0.382 6,

0.372 14.
0.372 14.
0.372 i4.
0.366 64.
0.366 64.

0.366 64.
0.364 20.

0.364 20.

0.364 20.
0.360 42.

0.360 42.
0.360 42.

0.357 176.

0.357 176.

0.327 176.
0.356 83.

0.356 83.

0.356 83.
0.355 170.

0.355 170.

0.355 170.
0.354 696.
0.354 696.
0.354 696.

42

42
42
71
71

82
82

27
27
27
53
53
53
75
75
75
96
96
96
93
93
93
97
97
97
5
5
5

2.#ix104

2.#ix105

2.#IxI0 e

7.34Xi04

7.34Xi05

.34Xi0 e
53×104

4.53×I05

4.53×i0 e
3 47xlo _
3.47×105

3.47xi08
i. i0×i0 _

l. lO×lO e

l. lOxlO 7

6.61Xi04

6.61×i05

6.61×i0 e

4.95Xi04

4.95Xi05
#.95Xi0 e

1.79Xi0 _

1.79Xi0 e
1.79Xi07

1.06xlO =

1.06xlO e

1.06xlO 7

7.86Xi0 _

7.86Xi05

7.86x10 e

Rom. Des.

I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XlI

XIII

XIV

XV



lOC_

10!

ln?

10 "_

107

lnm

lOC_

11 _

p'7

lO

P6

P3

2!

In

TABLE D2

COMM_N COV,C_T,CT3,_OCT,A _

FORMAT (_IPe_,P(aM,c12,_) ,_X, I I )

F_PMaT eHCAqF NO., 13 ]

FORMAT 1_)

FORMAT _H PT,aX,IHM, 16×,%HTHETA,12X,%HOMFGA,IP×,7HFP_ILON)

FORMAT I_,4(?×,71_,8))

FO#MAT 3t4 PT,4Xt_HVFLOC[TY,7X,I IHT_MPFRATLJD_,4XtTHDFNqITYo_X. lqHT

|HWDM, ORFcq,,2X, | IHTO[, #Dr<c, )

FhPMAT (IGt4(PM,FIRo6), TX.cl qo6)

F:O#MAF (2(PX,FIS,8), I_X,_OX, IHI )

_FAm I01, I_IN

Q_f) Iml, CC,5_L,KCl

GAMMA = £e/3e

= 16,_34F7

qR = 7.67F--|_

O=Aq tom, CMI ,COCl,Tl ,JJ

_m 1 = m_*T) **m/(F_mI*_)

DT_ = D_(_e+FDqI/3o)

A c = H(DI_II]

_c = Bm*!]l +OTI

C_V = A_IO e

_e! = C_V*I!I

Ml = COT*TI

f_ {<EN ec KWTTCH I ] 1 R,P7

CALL WANHI#G(OF,m,AL ,Wl ,CC,W_,HP,J)

f_ (mFNcc m_TTrH I ) 2_,_I

tl_ = WP/COV

T? = NP/COT

ode? = _WP_H2W*_

_D# = I ,+(I e+4,/3,*Fpc#)**2,/(I ,/_=2+a,*=p_#)

FMp = [Ip/qOpTF(GDp*_WT 9 )

NOP : AqltlP

PP = HO2*P*T2

CT3 = COT_COT_COT

_QCT = _#TFfCOT)

C2# = CI._(HT,W2)

CD_ = _t_O(Hl ,Wl )

DI_NCH I07

= 0

PIINCN fOR, K,FM! *HI tWl sePcl



TABLE D2 (Cont¢c_)

K = 1

mI_NCH 108, K,F._M2,H_,|_/2,_P_2

DI INOH 10Q

K = r)

PtgNCH I I0, K',UI ,TI ,HO1 ,I01 ,I::)TI

:< : |

Imt_CH I I0, I<,U?,T?eHO2oP2,PT2

mlINCH I13, EMI,FMP,_L,_

O!JNCH 113, WI,W2,HI,H?

m%INCH 113, COV,COT,F_ET,A._

.c'ttNCH 11 _, CPP,CDO

If_ = It)+ 1

C.O TO 6

mNn

qtlBROUTINE RANHt;G(_,SA,AA,AI,CA,_2,_3,N)

_ IMFN< ION C(I01,F(In)

= 1

= 6o-1 ,/n_

= q.*DWW3/_A

C(I ) = PA01,

C(?) = --IOQ76,

C (_) = ?01SS,+I37P,_AA

C(a) = -(IoOaO,+aTOa,.AA)

C (_) = 9766.+S96a._AA÷P_ae_AAWAA

C (6) = --(2770,+33Q2,_AA+67?e_AA_AA)

c(7) = 41?,+85Po*_A+A6So*AA*AA+?So*AA*AA._

r(8) = -(22.+96.WAA*(I.+AAI+3?.WAAWAAWAA+BW(7._D))

C (91 = (I o+A_)*wa+(_.-D)*A

C(I_) = -(!o+_)*_

tt = 7,-D

IF (0) la,13,17

| 2 _i'q = (A*-_OPTF(9,--7,_AA))/7.

_I q = (t_--l,)W*P-aeW_)W_A

I = (_I c) I_,16,16

_ _ _Ic = (ae+SO_TF(qe-7,*AA))/7,

GO TO !7

CO TO ] 7

I_ WB = ([_+I.-SQRTF((U-I.)**2--a.*U*AA) I/(?..U)

ql_ = 9.--7,*AA

IF (DIS) 18,18,19

GO r_ 17

19 WF = (4---_OPTF(DI_))/7,

_7 Wl = T,_tF-WR)/IO.

_(I) = r(l)

_0 TO I = ?,lO

2_ _(1) = C(1)+V(I-I)*_I2T

Q = F(IO)

23 WPT = W?T+WI

IF (WE-WPT) 3,3,4

q Wl = _'I/10,

GO TO

F(11 = C(1)

DO 8 I = 2,10

8 V(I } = C(1) +F(I-I )*W2T

IF (_*_(10)) l,lO,?P
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GO TO 23

| q I_FTtJ_N

! mm = 0,0

nO Q ! = l,Q

,_! = Tn-!

c) mP = Fo+X|*C (|)*_At?T_(Q-[ )

IF ( AF3£F (DX)-CA) I0,10,11

| r_ A_ -- WPT

A_ = ((I e-A2)*(?e*A_-! o)-_A)/n

I I F(1) = _(I )

? _(1) = C(1 )+_(I-I)*W2T

GO TO 1

I=-N 1'3

_ItNrT lhN CLP (H,_AI)

COMMON rOV,CC_T, CT3, _(3CT, Ac

T = H/COT

T! = _,03%F--'_*T**(Ie/3,)

IF (,Qe_-T|) 1,1,?

1 C_ _,l = 1,+T1

? CON -- I,/(I,-TI )

_F Tt _DN

_NF_

14Q C_O_
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F_OF{TH],OM| )=TH|/OM|+OM|+{_THI_TH|_TH|_TH| )/3,-|,

1THP

FOMF(TH1 • OM1 ) = | o-TH| /(OM1 _OMI )

TOFF(TH? ) = TH_ /CT

VOFF{OM? ) = OM_ /EV

P_IF (VsT) = egeO_F-|5_V_T_T_T/FM

_THF{HtW ) = I o+R o#D#F_R (HeDt)

1_4 FORMAT (1HO_?_H Ol_T OF ALLOttED _EGION)

1_ E_M_T (IHO, I_H|NDETE_MTh_TF FO_M}

10_ F_MAT (!HO, I?H F = 0 CI]BVF)

e_6 FOrMaT ( 1HOil 1H_NCB, (l/?)_ I])

00_ FORMAT (F6.1 _?I_)

0 = F_M_T (_I_)

1_m FOrMaT ( 1HO,?HPT ?X, 1H_ I_,_HOMEGA I_,_HTHFTA ]?_IHF 16_i _HG

I 11 F_BMAT (1H i_H_ I4_(?XIF]_) )

|_ FORMAT (|H_I_HMIN, Fil 1X_?HVEL,TH,_ IOXiTH_AT-VFLt IOXigHAT/ OMEGAi_

1XI_HTH_TA)

11_? FORMAT (]H_.6HMAX, GII|_,SHTEMP,TH.,gXI_H_AT-TFMPlgX_gHAT/ OMEGA,8

I_I=HTH_T_)

110_ FORMAT { IHO_ 14HM_ DDPH|/P_I_3Xtl_HM_X,?TF_/ITF_M_3X_gHAT/ OMFGA

_ FOP_AT (1H! _HCA_F N_, lq}

Qg_ mOPM_T (1H ,_I_,R,_X,FI_,B)

_6 FOPMAT (IHO ?X,3HMO= EI_,8,?X,3HM]= EI6,_,SX,_HA= EI6,8,SX _HS=

]mlm,_)

IaX,6HTWmTI= ml_,m)

_g? FOPMAT (]H ?X,3HCV = F|_,_,?X_HCT = EI_.8,_X,mHBETA= F1B,8,BXI_H_=

IFl_o_)

|07 F_DMAT (IH _(_XIF1S,8)}

lgO F_BMAT{_I_)

1_1 FORMAT (1HO 3X,?HLAMBDA= FIM,8,4X,BHTHET_ = E1 _B_4X_6HOMFGS=

IO m FORMAT (IH 4X_6HLD(_)= E15,8,4X,6HL_(S)= E15,8)

100o FOPM_T (IH_,t4HOtfT_IDE CLI_VF_)

_gOO FORMAT (1H t I6i IH*i I_}

1000 FORMAT ( _H _ 05X,6HFW = _}

!0ol _O_MAT (IH ,g%X,THFht POS,)
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|12 I_OI_MAT ( 1HO.2M,?HPT _X,'IHY |4X.SHVIF__LOr'[TY 7"K, | IHTFMPFP. AT_II_E _M,7H

1r)FN_ITY 8X.IPHTHIFI_M.PI_E_. "_X, IOHTOT.PRE¢S. 6>(.1HM laX7HEP_II_ON)

'11 _ FE'%DMAT (1H .I_,8(IX,EI4.7))

LDc)QQ F(%I_MJ_,T (IHC),7HMEAN LP, lr_X,'TH MEAhl LP,ICI)K,THMFAF, I LQ, IO)_.SHr)Ft_TA)

QQQF 1 FC%PM/_,T (I H ,_-I_IR* _(?>(,E.I_IR) )

Q_'_D INP_IT TAPE f3, c)_, lO|_,!, I_OIIT,k'lrq,k__F,FIF

D_'Arh |NP!PT TAPE R, Oc)F_, 7C,.#OF,I<.HF-

im = fr_IN

r) = 1 ,/_,

I F_ ,*'_TT E c)I!T_!_T TAPE 6, 86, Tr)

QI:'Ar) l[_llD, I T TX%pI:" _, 9gc'4

DEar) INP_IT TAPF _ R_i I_M_,ll [,IM_ , iS,

I*flDITE r_IITPVlT TAPE 6_, 96, ilpc), i,IMI , A,, c

DEAr) I_,IP!_T TAPF 6, 85, O_FGn, OMFGI , THFTO, TH_'TI

wI_TE. ¢D!ITP_IT TAP E. 6), g'7, OMFGC), OME.C_I , THFTh_ THETI

o_'_n INP_!T TSP_" G, Bin, C\t, CT, F_FT, FM

h!DITE, mIITPl)T TAPE 6,297, CV, CT, RE "r , FM

DF'Ar) INP_T TAPE. 5, lg_,CPVl ,CDY[Z

l_m = Pelf (O_FC_O/CV,THFTC_/(_T)

rp'_'_p o(: t -- LOGF'(!,+D_)

?r_r_-_ C'_N = (TNFTC)/CT)_--W-,o._/PC- L

ETt% = o "__/o_'-- 14 @(-C C)_I

('17 -- 4oW'FTA/('_.'W'FM)

('H_ : 80,_C|7

D< = Imc. lF (OMFC_ ,/C%I,THrT1/CT)

IF- (D_-I minE.-4) ?(%_412_')=,_C) c',

C_O T_ 20_6

9,rarer. P}m| = I.C)C_F ( | ,,, +D_ )

_t_. C_IkI --_ (THE'TI/CT)_W2,m/D< L

eTA = $ q_ ?E.-- _.4 -N-C 0_

C I = 4,WrT/_/(_,_ r_ )

rl-ll = F_O,_'Cl

C. tDF = 8,*R/(Q,*mE.T )

r'27 - _H_+Cor-4$CPYZ-'/-TNFTC....W.THFTO_THFT_

C_ = CH | +C OF-_C_Y I _ THIFT 1 _THF'- T _ -X-THFT _

hltD_T c r_!_TP!IT TAPE 6, IgF_

!,_IT =" _T_TPlfT TAPE 6), 197,C1 ,CIZ,C_YI ,CDY7,C?,C?7

_OCT = _Or_TF (CT)

CT'_ = CT_CT_CT

_"tl p_ ----" ¢OIDTF(CI )_(DI_TF'(c17)

Ci DM = _F')IDTF(CDY1 )-W-P-(91_TF(_DY7)

f'! r)_ = _r)r_TF (C2)_,Or#TF (C?7)

T3E. = ("|=DM/(T| r')_

htl_l'TE, r)t)TPI_T TAPE 6, 999g

t'I_ITF OIJTPIIT TAPE 6, c)9Q8, C|_DM,C| DM,CLOM,IDF

D = rT/(CV.CW)

T = TOEF(THETC) )

\1 _- \1 ('_E._" | r)MEGC} )

_'lm = E.PC.F ( THETOi r_MEC r_ )

I,I_ITF r)_ITPlIT TAPE 6, g8

w" = t'%

_tlDTTF" O_TPlgT TAPI_ 6, c)m), k',I_MO,T,FP, V

T -- T_I ='p ( THE.T I )

='P = EP_F "- (THrT I , OMP'G1 )

'<'- = 1



_TABLE D3 (Cont'd,)

_dI_ITE O_JTPt_T TAmF 6, 9g, K,I_M|, T, F_P,V

_OIT_ _!JTI_tIT TAPF 6, I 12

¢i'fl = ='?hM_"(THF'T| q_MF_| )

_,'M = c,_DPTF'(H)

_,tk'C = _,I_(WM-OMEGI )

I,_L_ = _,,_._(I='A_+C,(")I_TF(FAC4_F,_C_4..II.H) )

C-if) = _01 _" (H,_,rp)

H_ = -I='OMF(H,W?)/F'THF'(HeW2|

J = !

y -- ,m e

v..C = I

_V,,t = ¢%•

ht = _MIrG 1 +',_N_"

='1_ = me

I "_ I= = Fr)C)F(H_)

: T,_ (._-VC _, _ _,_

4 I_" (_,--WM) 7,7,8

J = 2.

IF" (F'_I--I =') O,c_,10

I_ l='lk! = _"

H F I_.! _-- H

_if_ fk_ = ht

1;_ _'_ = _,_(F'+_'L)

r" 1 = !="

T = TOI='FfH)

V = VOFF (ll!)

OH = F_/V

I_ = DHWI_.N-T

=" = EI:D_.W'(HiW)

DT = Im_(Io+F/_, )

blI_ITF OIJTPlIT T_PE 6, 112, KC,X,V,TilWH,Im,PT,EM,E

ht = Iii.4.. hFNC

k'_" = w-r+' I

= VC

G = _.OOF(H,9_)

IF" (_P"I-G) 14,1=;, 15

I 4 r'-M = C,

I,t_.M = z,t

?a= F'l_ = _o_.,/.(F+_'L)

CL =

= _'--CI _ImM_'WNC/FIm

EM = b_/_OWTFfGAMPF(FTO_F(Hi_F) )'X'H)

147
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TABLE D3 (Cont'd.)

T = T01=I =(H)

_,! = \I¢3='1 c (hi)

t':" _- _'_.P"fl-l,4*t)

OT : 0-'_(1 ,-I-I='/'_e )

hft_lTC _I_TPIIT T_I:DF 6, I I _..q k'C',_,VeT_DHeIDeDTeFMeF

I = !

K'C = I<'I'+I

_N TFh | 6

m H_.'r -- 'm,r_=;-_ (TFII='TI--THIrT(m)

h'F9 T Tr ?hl _TDI IT T/_ tS)r _q _r_rl I

= TH=T I

It.N, -- f_ •

! _ w = l-4--_INr

_/_¢" = _ ,--c_H_/'_ e

_,l -_ r- , c:;-_ ( _ p, (" + C r)t'_ TO" ( _ D_C _F _ C_ Z, , _ H ) )

Tr ( r,N!--_ ) 17,17, lq

n Hi% -- --FC_Mr { H, !" ) /PTHP ( H _ h, }

_ To, (pm,pl _ ,L

_I ;c (';N--F) 90,_O,p_

u.f_" Pl = I--.I

!*It" NI --- h_

V = "/+rf OM_H_,r/C_m

_1 = ("-

Ir'V' = I_I/Ct_DTF{_AMPF(_'DC, F{H,!q) )*H)

T : TC_'FfH)

"IDTT _" ?'_IITDI_T TADF 69, ] IR, WC,X,V,TIDH,PIPTIEMIF

k,'r = k" r + I

_E (_I--THC-T_) P.'_,2_, 16

2 _I_ T T I=- (%IITD!IT TADF 6, I 0r_m

9"_ T_ = (TH_'TI--THF'TI9)'}(-C[_OM/C_N

T,,, = (")"_',:'GI --C, MFG0 )-}l-El PM/FN

t_8_4 = Cl_ DIM / TF4

DA_._ : ("l DM/Thl

_,'D T T =" PH ITDI IT T/% _- F_ I l_P

hlI_|TF r'),ITDtlT TADF 6, I'73.'3,, FNI,,T_I,_Ah',WF_.I,HF'N

hid T T _- r%IITD!tT TADF 6 _ | | _9

"IDITE C")IITDtIT TADF 6, lO'_ GN,,TH,_PAH,V'GN,HGN

I="V,R = c.C_DTF" ( ! tM("_-W-I IM I )

TLD = Tl_t/CL E)M



TABLE D 3 (Cont'd.)

TMLt) = TLPI_MI_

_,Ip| T_ _!ITPlJT TAPP" 6 q 907

'IID]T _ _I_TDAIT TAPF 6, 90_, TLm,TMLP

T_ f Tr_r_!IT--|F_] 24,24,_=5

2: T n = I m+ 1

C,_ Tr_ I 8

P4 rAIL P"_IT

149
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Case No.
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TABLE D_

CASE NO.

I

II

III

:cv

V

VI

VII

VIII

IX

X

XI

XII

XIII

XIV

XV

EDDINGTON APPROXIMATION

INVALID VALID

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X



_52

I

0
m

m

0
II

i I

II

I

d

I

d
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TABLE D6

6
0

0.01

1.0

lO.O

T
Q

(OK)

10 4

10 5

i0 e

10 4

10 5

l0 s

10 4

10 5

l0 s

te ref (cm)

7.4 × i0 l°

7.8 × 10 7

9.1 × 10 4

1.4 × i0 Is

1.5 × 10 I°

1.7 × 10 7

1.3 × i0 Is

1.4 × I012

1.6 × l0 s
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TABLE D 7

CASE NO. Gmax.

I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

XIII

XIV

XV

0. 102

0.143

o.165

O. 304

0.339

0.357

O. 378

0.397

0.410

o .4oo

0.416

0.424

0.415

0. 421

0.425



*1605

lOn

ICl

104

10a

14

16

TABLE D8

FORMAT (15.4X.E6.|)

FORMAT (3HNO.. 15,SX,2HS=,EI_.8,SX,2HA=.EIS.8)

FOrMaT (3HPT,,3XiSHOMEGA, IOX,SHTHFTAi|OX,4HFPS,,| |X,THG

1HM)

_ lnOq NoCC

WR : 0.156

F = 3o

WE = 0.700

EN = N

WNC = (WE-WB)/(EN-|,)

DN I I=I,N

= I-I

I_ll = WR+X*WNC

H1 = WI*WI

El = 3o*(Io-2o*Wl)/W!

q = F1/Wl**7

A = 8.*WI-IO,*WI*WI-I,

GPPl = I,+4,*FI/3,

CD! = ]-+GPPI*GPPI/(I,_+4,*FI)

FMI = I,/SOPTF(GPl)

PltNCH |01_ I,£,A

OIINCH 104

L = I

PtlNCH lOP, L,WI,HI,FI,GmI,FM!

CALL DHIN(_,A,Wl ,_IO,CC)

((I .-_IO)*(7.*WO-I.)--A)/F

q_WOWHO_HOWH_

= I .+4.*EO/_.

I.+GPPPWGPP2/(I.5+a._FO)

He =

EO =

GPO =

L_ = 0

Pt!NCH |0_,

C_NTTNtlF

FN_

L,WO,H_.FO,GP_,FMO

£tlBPhLITINE PHIN(£_,AA,DI,_h,PE)

DIMENqlON C(IO),F(In)

= 5q

A = AA

B = 81*/%

C(1) = PaOIe

C (2) = -I0976.

C(3} = ?OI88.+I37P.*A

C(a) = -(19040.+4704.WA)

C (& ) = 97660+Sg64o_A+?o40_@_

C (e,) = -(?720.+33g?.WA+67?.lA_A)

C(7) = 41Po+8_Pe_A+468oWAWA+PS.*AW_A

C(e) = --(320+96,*A*(I ,+A)+gPoWA*A*A+4,*_)

C (g) = (I.+_ 1"'4+_o*_

C(IO) = -(1 ,+A)*B

IF (A-1.78571 la,13,t3

GO TO 7

WB = (4o+SQRTF(g.-7e_A))/7.

IF (A-._62_) I=, !6.17

WF = (_.+SQWTF(g.-16e*A))/R.

GO TO 18

WF = 0.6?5

155
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GO TO 18

17 WF -- DI+IO,*PE

18 _NC -- (WE-W8)IIO,

4 WT = W

F(I ) : r(l )

D0 I I = 2, I0

I _'(I) = C(I )+_'(I-I )*WT

IFIP) 6,7,6

6 WT = WT+WNC

IF (WF-WT) 2.3.3

3 WNC = _rNC/10.

GO TO 4

;? _'(1 ) = C(I )

_[30 _ I = 2, 1_

5 R(I ) : C(I)+F(I-1 )'*WT

IF (_*F(IO)) 8,7,9

0 W = E( 10}

GO TO 6

7 DO = WT

_FTIJ_N

FD = (m,O

DO I0 ! = I ,O

× = In-I

I0 FP = FP+X*C(I )*WT**(9-1)

f3X = E(I_)/FD

WT = WT-DX

IF" (AR.qF(DX)-RF) 7,7, I I

1 1 Ell) = c(1)

DO 12 I = 2,10

12 F(I ) = C(I)+_'(I-1)*WT

GO TO 8

FND

TABLE D8 (Cont'd.)
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